ДИНАМИКА МОРФОФУНКЦИОНАЛЬНЫХ ИЗМЕНЕНИЙ ЖЕЛЕЗИСТОГО ЖЕЛУДКА ДОМАШНИХ УТОК В ПОСТНАТАЛЬНОМ ОНТОГЕНЕЗЕ В ЗАВИСИМОСТИ ОТ ВЛИЯНИЯ ПРОБИОТИКА СБА

Э.О. Оганов¹, Т.С. Кубатбеков²

¹Кафедра анатомии и гистологии животных Московская государственная академия ветеринарной медицины и биотехнологии им. К.И. Скрябина ул. Академика Скрябина, 23, Москва, Россия, 109472

²Кафедра морфологии животных и ветсанэкспертизы Российский университет дружбы народов ул. Миклухо-Маклая, 8/2, Москва, Россия, 117198

В настоящей статье приводятся данные, полученные при изучении железистого желудка утят в инкубационный (антенатальный) и постинкубационный (постнатальный) периоды их жизни.

Ключевые слова: железистый желудок, лимфатические узлы, морфометрия, пробиотик СБА.

В современных технологических условиях ведения птицеводства вопросы морфофункционального контроля воздействия биологически активных веществ на организм животных, в частности на органном, тканевом и клеточном уровне, является актуальной проблемой. Возможные реакции или адаптации тканей в связи с влиянием биологически активных веществ требуют тщательного изучения и анализа [2]. Сведений по данной проблеме явно недостаточно, притом они нередко приводятся без детализации и учета породных и возрастных особенностей, ростовых процессов. Большинство работ выполнено на организменном и сравнительно мало на тканевом и органном уровне.

Одним из неспецифических биологически активных веществ (пробиотиков) является бактериальный препарат СБА (состав: молочнокислый стрептококк, бифидумбактерии и ацидофильные бактерии). Изучению влияния СБА на структуры организма птиц посвящены единичные работы, и в большей мере они сводятся к весовым и линейным показателям органов и систем кур и уток [1]. Данных комплексного изучения влияния бактериального препарата СБА на тканевом и клеточном уровне нами не обнаружено. Остается много вопросов и по самой структурной организации, развитию тканей у бройлерных уток в онтогенезе.

В данной работе нами приводятся данные, полученные при изучении железистого желудка утят в инкубационный (антенатальный) и постинкубационный (постнатальный) периоды их жизни.

В первые дни жизни железистый желудок (ЖЖ) имеет округленную форму за счет активной дифференциации сложных желез и в дальнейшие возрастные периоды, вытягиваясь, приобретает веретеновидную форму. В связи с тем, что утки — водоплавающие птицы, мацерация в зобе имеет не такое важное значение, как у зерноядных, поэтому зоб при вылуплении из яйца не развит вовсе. Он фор-

мируется лишь к 5—10 дню постнатального онтогенеза и развивается в орган слабого веретеновидного расширения при входе в грудную полость. Основная нагрузка по синтезу веществ, необходимых для пищеварения в передней кишке у уток, приходится на железистый желудок.

В 1-суточном возрасте (или на 28-й день инкубации) масса ЖЖ равнялась 0.30 ± 0.02 г, что относительно массы тела составлялщ 0.57%, а ее анатомическая зрелость была всего 3.03%. Это обстоятельство указывает на то, что для достижения дефинитивных структур железистого желудка ему необходимо влияние не только внутренних, но и внешних факторов, которые наиболее выражены после вылупления из яйца.

За 4 месяца постнатального онтогенеза наиболее интенсивный рост железистого желудка отмечается за первый месяц жизни. Так, в контрольной группе увеличение составило 14,23 раза — до 4,27 \pm 0,33 г, а в опыте — 15,83 раза — до 4,75 \pm 0,58 г.

Во второй месяц жизни интенсивность роста снижается: в контроле увеличение в 2,31 раза и в 2,04 раза в опыте — до максимальных показателей в обеих группах $9,90\pm0,32$ г и $9,70\pm0,32$ г соответственно (P<0,05).

За 4 месяца роста и развития только в первые 10 дней и в 56-суточном возрасте показатели массы железистого желудка были выше в контрольной группе, в остальные возрастные периоды прослеживается тенденция превышения этого показателя у опытных цыплят, а в ряде возрастных отрезков это подтверждается достоверным различием (табл. 1).

Таблица 1 Динамика массы железистого желудка уток при скармливании препарата СБА

В	Macca, г М±т		ИР		ОМ		ПЖМ		АЗ	
	К	0	K	0	K	0	K	0	K	0
1	$0,30 \pm 0,02$	_	_	_	0,576	_	_	_	3,03	_
10	$0,89 \pm 0,08$	$0,82 \pm 0,08$	2,966	2,733	0,861	0,886	0,059	0,052	8,989	8,453
20	$2,08 \pm 0,17$	$2,34 \pm 0,15$	2,337	2,853	0,587	0,622	0,119	0,152	21,01	24,12
30	$4,27 \pm 0,33$	$4,75 \pm 0,58$	2,05	2,03	0,558	0,476	0,219	0,241	43,13	48,97
45	$6,31 \pm 0.33$	$8,20 \pm 0,54^{*}$	1,48	1,73	0,454	0,453	0,136	0,23	63,73	84,53
56	$9,90 \pm 0,32$	$9,70 \pm 0,32$	1,57	1,18	0,459	0,38	0,326	0,136	100,0	100,0
120	$6,48 \pm 0,73$	$6,83 \pm 0,30$	0,65	0,70	0,31	0,27	-0,05	-0,04	65,45	70,41

Примечания: P < 0.05; B - возраст, сут.; <math>P - U интенсивность роста, раз; D - U относительная масса, %; D + U интенсивность органа, %; E - U интенсивно

Максимальная интенсивность роста отмечена в контроле в 10-дневном возрасте — 2,96 раза. В опытной группе интенсивность роста максимальная во вторые 10 дней постнатального онтогенеза — 2,85 раза, хотя и в первую декаду орган увеличивается достаточно интенсивно, но несколько менее динамично, чем в контроле, что, по-видимому, связано с адаптационными реакциями тканей железистого желудка на препарат, однако уже во вторую декаду это отставание форсируется и в последующем, вплоть до 56-го дня, отмечается обратная картина.

Максимальная относительная масса железистого желудка в обеих группах отмечалась в 10-дневном возрасте — 0,86 и 0,88% соответственно, что указывает на опережающий рост железистого желудка относительно массы тела, поскольку этот процесс стимулируется началом активного приема корма утятами. Это, в свою очередь, способствует дальнейшему усиленному росту тела животных. В последующем этот показатель постепенно снижается, хотя вплоть до 56-го дня у утят обеих групп он остается на достаточно высоком уровне, что указывает на функциональное значение данного органа в организме уток.

Показатели анатомической зрелости ЖЖ достаточно высоки в 30-дневном возрасте — 43,13% в контроле и 48,96% в опыте. К 45 дню ее уровень достигает 63,73% в контроле, а в опыте даже более — 84,53%. Максимальная анатомическая зрелость органа (100%) в обеих группах отмечена к 56-м суткам постнатального онтогенеза.

В постнатальном онтогенезе продолжаются процессы роста и дифференциации тканей органа, однако, основываясь на макроморфометрических показателях, мы посчитали правильным отразить гистологическую картину железистого желудка в 45-дневном возрасте, т.е. в те сроки, когда мы наблюдали достоверную разницу в показателях массы органа между испытуемыми группами.

Так, в 45-дневном возрасте толщина железистого желудка в контрольной группе в среднем достигала $2920,0\pm80,0$ мкм, увеличившись с 1-суточного возраста в 1,48 раза, а в опыте — $3650,0\pm60,0$ мкм (увеличение в 1,85 раза) (P < 0,001).

Слизистая оболочка имеет значительное развитие. При ее толщине у контрольных утят $282,7\pm43,2$ мкм, а у опытных — $398,0\pm65,4$ мкм (увеличение в 1,20 и в 1,69 раза соответственно) в ней уже хорошо развиты простые железы, которые по своему строению напоминают кишечные крипты, покрытые цилиндрическим эпителием высотой 10—12 мкм.

Подслизистая основа составляет 74,64% у контрольных и 67,87% у опытных утят. Сложные железы имеют округлую, овальную или угловатую форму и выстроены в 2—3 ряда. Между ними, в промежуточной соединительной ткани, расположены кровеносные сосуды, еще сохраняются зачатковые глубокие железы и лимфатические узелки. Высота сложных желез в контроле была в среднем $686,66 \pm 38,01$ мкм и в опыте $1624,0 \pm 103,9$ мкм (P < 0,001) (увеличение в 1,64 и 3,89 раза соответственно). Их ширина составляла $991,17 \pm 55,46$ мкм и $801,0 \pm 26,7$ мкм соответственно (P < 0,05) (увеличение в 4,18 и в 3,38 раз соответственно).

Таблица 2
Возрастная микроморфометрия ЖЖ уток
в зависимости от применения пробиотика СБА

Показатели	Вар.	Возраст уток (дней)					
		27 (инкуб.)	45	56	120		
Высота сложн.	K	417,0 ± 40,9	686,66 ± 38,0	1 524,4 ± 71,9	1 242,5 ± 104,7		
желез	0	_	1 624,0 ± 103,9***	_	1 373,0 ± 162,1		
Ширина сложн.	K	$237,0 \pm 9,1$	991,17 ± 55,46	$1078,8\pm40,4$	$777,5 \pm 23,45$		
желез	0	_	$801,0 \pm 26,7$	_	833,7±61,1		

Окончание

Показатели	Вар.	Возраст уток (дней)					
		27 (инкуб.)	45	56	120		
Длина третичн.	K	95,0 ± 5,0	$370,0 \pm 20,4$	399,3 ± 12,4	355,0 ± 22,2		
протока	0	_	400,5 ± 19,7	_	$333,7 \pm 23,5$		
Длина <i>d</i> вторичн.	K	291,1 ± 21,6	$336,0 \pm 58,5$	453,3 ± 61,2	$378,0 \pm 54,19$		
протока	0	_	$348,5 \pm 58,8$	_	720,0 ± 52,2**		
Ширина <i>d</i> вторичн.	K	$36,0 \pm 5,8$	180,0 ± 14,3**	$303,3 \pm 34,8$	$199,0 \pm 16,22$		
протока	0	_	$111,4 \pm 12,4$	_	365,0 ± 56,4**		
Толщина слизист.	K	$234,2 \pm 45,9$	$282,7 \pm 43,2$	$580,0 \pm 87,4$	$324,5 \pm 34,25$		
оболочки	0	_	$398,0 \pm 65,4$	_	$381,8 \pm 43,6$		
Толщина мышечн.	K	$168,0 \pm 24,5$	$458,0 \pm 31,9$	$748,0 \pm 101,4$	$728,2 \pm 16,21$		
оболочки	0	_	775,0 ± 22,0**	_	$741,4 \pm 57,9$		
Толщ. цирк. слоя	K	$94,0 \pm 10,7$	$294,0 \pm 9,2$	$485,0 \pm 52,0$	$574,28 \pm 39.9$		
мышечн. оболочки	0	_	345,0 ± 15,6*	_	_		
Толщ. внутр.	K	$32,0 \pm 8,6$	$60,0 \pm 14,7$	$202,8 \pm 22,6$	117,1 ± 16,5		
продольн слоя	0	_	$116,6 \pm 20,6$	_	_		
Общ. толщ. ЖЖ	K	$1970,0 \pm 80,0$	2 920,0 ± 80,0	$5450,0\pm87,0$	8 670,0 ± 200,0***		
	0	_	3 650,0 ± 60,0***	_	$7320,0\pm480,0$		

Примечание: *P < 0,05; **P < 0,01; ***P < 0,001; К — контроль, О — опыт.

Во внутренней структуре сложных желез мы наблюдали дальнейший рост трубчатых (третичных) желез, увеличение диаметра вторичного протока, однако наиболее значимым было интенсивное увеличение мышечной оболочки — в 2,72 раза в контроле (458,0 \pm 31,9 мкм) и в 4,61 раз в опыте (772,0 \pm 22,0 мкм) (P < 0,01) на 45-е сутки, причем в основном за счет циркулярного слоя (294,0 \pm 9,2 мкм и 345,0 \pm 15,6 мкм) (P < 0,05).

Эти данные позволяют нам ясно представить, что основные изменения происходят во всех оболочках железистого желудка. Однако у утят, получавших пробиотик, процессы роста и дифференциации происходили более интенсивно, что выразилось в достоверно больших микроморфометрических показателях сложных желез и мышечной оболочки. Это указывает на более высокую функциональную активность этого органа у подопытных утят.

В 56-дневном возрасте высота покровного цилиндрического эпителия не изменялась и оставалась прежней (10 мкм). Рост остальных структур продолжался. Из качественных изменений наше внимание привлекли процессы дифференциации зачатковых сложных желез, которые в этом возрасте еще продолжались, располагавшихся в перекрестках промежуточных форм в соединительной ткани между дефинитивными ее формами. Вместе с этим мы отметили не только развивающиеся формы этих желез, но и зачатковый слой их. Кроме этого, значительное развитие получают и волокнистые структуры органа. В 2-месячном возрасте железистый желудок по морфологическим характеристикам достигает высокого уровня дифференциации.

К 120-дневному возрасту мы наблюдали дальнейшее развитие структур железистого желудка: высота призматического эпителия слизистой оболочки достигает максимальной величины (15—20 мкм). Общая толщина органа составляла 8670.0 ± 200.0 мкм в контроле и 7320.0 ± 480.0 мкм в опыте (P < 0.001).

Достоверные значения микроморфометрических показателей мы получили также по диаметру вторичных протоков.

Таким образом, анализируя полученные данные, можно отметить следующие основные процессы гистогенеза и влияния примененного пробиотика СБА в онтогенезе.

- 1. В постнатальном онтогенезе наблюдается рост структур всех оболочек, но большего развития достигает аппарат сложных желез, процессы дифференциации которых продолжаются вплоть до 120-дневного возраста, что подтверждается наличием зачатковых их форм в 56-дневном возрасте и промежуточных форм у 120-суточных уток, ростом высоты покровного эпителия и толщины мышечной оболочки.
- 2. Препарат СБА активизирует, прежде всего, секреторный аппарат и рост мышечной оболочки в первые 2 месяца, после чего в контрольной группе отставание в росте желудка было сокращено и преодолено. Однако так как основные ростовые потребности уток необходимо обеспечивать в ранние сроки постнатального онтогенеза, мы считаем, что влияние препарата в первые 2 месяца жизни полностью оправдало поставленную задачу.

ЛИТЕРАТУРА

- [1] Сулейманов Ф.И. Онтогенез домашней утки и влияние на него биостимулятора роста (морфофункциональная, биохимическая и сравнительно-видовая характеристика): Автореф. дисс. ... докт. вет. наук. Бишкек, 1998.
- [2] Субботин В.В., Сидоров М.А. Лактобифадол для бактериопрофилактики и терапии желудочно-кишечных заболеваний // Ветинформ. 1993. 2. С. 20.

DYNAMICS OF MORFOLOGICAL CHANGES OF THE GLANDULAR STOMACH OF DOMESTIC DUCKS IN POSTNATAL ONTOGENY, DEPENDING ON THE EFFECT OF PROBIOTICS SBA

E.O. Oganov¹, T.S. Kubatbekov²

¹Department of anatomy and histology of animals Moscow state academy of veterinary medicine and biotechnology K.I. Scryabin Akad. Scryabin str., 23, Moscow, Russia, 109472

²Department of animal morphology and veterinary sanitary inspection People's Friendship University of Russia Miklukho-Maklaya str., 8/2, Moscow, Russia, 117198

Data provided in the article was received when studying a ferriferous stomach of ducklings in incubatory (antenatal) and post-incubatory (post-natal) the periods of their life.

Key words: antimony, water, soil, plants, animals.

REFERENCES

- [1] *Sulejmanov F.I.* Ontogenez domashnej utki i vlijanie na nego biostimuljatora rosta (morfofunkcional'naja, biohimicheskaja i sravnitel'no-vidovaja harakteristika): Avtoref. diss. ... dokt. vet. nauk. Bishkek, 1998.
- [2] *Subbotin V.V., Sidorov M.A.* Laktobifadol dlja bakterioprofilaktiki i terapii zheludochno-kishechnyh zabolevanij // Vetinform. 1993. 2. S. 20.