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Abstract. The key challenges faced by many of the existing digital soil mapping (DSM) techniques 
are the rigid requirements on the size of soil samples to extract the relationships needed and on the stationarity 
of the extracted relationships. These requirements limit the application of these DSM techniques. This paper 
provides an overview of the SoLIM approach and an introduction to the operation of SoLIM through 
the software platforms available. SoLIM is based on the Third Law of Geography, which calls for 
the comparison of similarity in geographic (environmental) configuration of a prototype and an unsampled 
location and then use this similarity to predict the value of a soil property at a given location. DSM under 
SoLIM approach removes requirements on the sample size and the stationarity assumption. In addition, 
the uncertainty computed based on the similarities can be used to improve the efficiency of error reduction 
efforts. The SoLIM approach has been implemented in two platforms: SoLIM Solutions and CyberSoLIM. 
The theoretical foundation and the availability of software platforms under SoLIM make DSM possible and 
convenient over large and complex geographic regions. 
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1. INTRODUCTION 

Smart agriculture, as a way to increase the productivity of agricultural lands while 
minimizing the negative impacts on the environment, must base its practices on detail 
information about the status of agricultural land and information on how this status 
varies over space. Data on the status of soils and its spatial variation across landscape 
is an essential part of the information about agriculture lands. Among the many methods 
for acquiring information on soil conditions, digital soil mapping (DSM), an emerging 
area in this field, is a major approach to soil spatial information gathering [1]. 

DSM techniques, an application of spatial prediction in soil mapping, are mostly 
based on three basic principles [2]: spatial autocorrelation principle (also referred to 
as the First Law of Geography [3]), the statistical principle, and the spatial heterogeneity 
(also referred to as the Second Law of Geography [4]), or the combination of these 
principles (such as the various versions of kriging [5] and geographically weighted 
regression [6]). The key challenges to the techniques based on these principles are: 
1) the requirement of samples of sufficient size for the extraction of the spatial relation-



Zhu A.X. и др. Вестник РУДН. Серия: АГРОНОМИЯ И ЖИВОТНОВОДСТВО. 2018. Т. 13. № 4. С. 317—335 

318 ЗЕМЛЕУСТРОЙСТВО И КАДАСТРЫ 

ships or covariate relationships needed for soil prediction; and 2) the stationarity assump-
tion of the extracted relationships [1]. These requirements have limited the application 
of this type of techniques for DSM over large and complex geographic areas where col-
lecting a sample set sufficient enough is prohibitively expensive and where geographic 
processes are so complex that the stationarity assumption required often does not hold. 

In recognition of these limitations faced by the techniques based on above principles 
Zhu [7] and Zhu et al. [8] presented a similarity approach to DSM (referred to as the Soil 
Land Inference Model (SoLIM) approach). The basis behind this similarity approach is 
what now been referred to as the Third Law of Geography [1]. This paper provides 
an overview of the theoretical thinking, the implementation and operation of this simi-
larity approach. The next section describes the theoretical grounding of the SoLIM 
approach which is then followed by a presentation on how this idea is implemented. 
Software realization and operation of the SoLIM idea are presented in Section 4. Future 
research issues related to SoLIM are discussed in Section 5. 

2. SOLIM AS AN APPLICATION OF THE THIRD LAW OF GEOGRAPHY 

The basic idea behind the SoLIM approach is another principle which has been 
commonly applied and now referred to as the Third Law of Geography [1]. This law 
states that “The more similar geographic configurations of two points (areas), the more 
similar the values (processes) of the target variable at these two points (areas)”. The 
SoLIM approach exploits the comparative nature of this law in predicting soil conditions 
at an unsampled location. With this comparative nature the soil property value at an un-
sampled location can be estimated by the similarities in the environmental configuration 
between the unsampled location and a known prototype available (Figure 1). A prototype 
in the sense of soil mapping can be perceived as the central concepts of a soil class, 
a representative case of the class, or a field sample [9]. Under this notion, the process 
of DSM under the SoLIM approach can be accomplished in three steps: First, the simi-
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Fig. 1. The comparative nature of the Third Law of Geography used in SoLIM 

Ek is the environmental configuration at prototype k and Ei,j is the environmental configuration 

at unsampled point (i, j). Vk is the soil attribute value at prototype k and Vi,j is the soil attribute value 

at unsampled point (i, j). , ,
k
i j ES  is the similarity in environmental configuration between unsampled 

point (i, j) and prototype k. ,
k
i jS  is the similarity in soil attribute value between unsampled point (i, j)  

and prototype k. ,
k
i jS  is approximated by , ,

k
i j ES  

Figure 1 clearly shows that under the SoLIM approach the weight assigned to each 
prototype involved is based on the similarity of the unsampled point with each of 
individual prototypes, which is what the Third Law of Geography calls for. In this notion, 
no general relationships need to be extracted and quantified. Instead, the similarity 
in environmental configuration, as an individual representativeness of a prototype to an 
unsampled location, is captured and thus local variations in soil conditions can be 
expressed [12]. This similarity can also be used to compute the uncertainty for each 
prediction [13]. This uncertainty can be used to assess the quality of the so predicted 
results and be used to allocate future sampling efforts to further improve the quality 
of the prediction [12, 14, 15]. The use of individual prototypes and the uncertainty 
measure associated with the prediction using these prototypes under SoLIM removes 
the requirements on the specific number of prototypes (or samples) needed, the re-
quirement on spatial distribution of these prototypes (or samples), and the stationarity 
assumption [1]. The impacts of the SoLIM approach on soil mapping have been 
documented in other studies [16, 17] and are not repeated here. 

3. IMPLEMENTATION AND DEVELOPMENT OF SOLIM 

The key issues to the success of the SoLIM idea as expressed above are the quanti-
fication of prototypes and the characterization of environmental configuration. Thus, 
the implementation and development of the SoLIM approach have focused on these 
two areas so far. 

(Ei,j, 
Vi,j) 

Unsampled (i, j) 

Sample 1 Sample k Sample n 

(E1, V1) (Ek, (En, Vn) Vk) , ... , , ... , 

  



Zhu A.X. и др. Вестник РУДН. Серия: АГРОНОМИЯ И ЖИВОТНОВОДСТВО. 2018. Т. 13. № 4. С. 317—335 

320 ЗЕМЛЕУСТРОЙСТВО И КАДАСТРЫ 

3.1. Quantification of prototypes 

As stated earlier a prototype can be a field soil sample or the central concept 
of a soil class. The quantification of a prototype under the SoLIM approach consists 
of 1) the derivation of a set of covariates to characterize the geographic configuration 
for the prototypes and 2) the property values of the prototype. 

Field soil samples as prototypes: Clearly, the field soil samples are good sources 
for prototypes under the SoLIM approach. Each sample has soil attribute values 
observed. The environmental configuration of a sample may be characterized in the field 
directly but more than often it is done after the fact using geographic information 
processing techniques and remote sensing methods based on the (x,y) coordinate values 
of the sample location. In other words, the two elements of prototype can be very 
conveniently defined with the use of field sample points as prototypes. Thus, samples 
naturally fit the use of the Third Law of Geography well with the SoLIM approach. 

Central concepts of soil classes as prototypes: For a soil classes we often have 
information about the typical values and the ranges of soil properties. In this case 
the property values of the prototype representing this class is not difficult to obtain. 
The characterization of environmental configuration for the prototype would present 
challenges due to the fact that the environmental configuration is often not complete, 
sometimes even not available at all in soil survey reports. However, local soil scientists, 
particularly local soil surveyors, would normally understand under what kind of envi-
ronmental conditions (or configurations) the soils belonging to a particularly soil class 
would exist or develop. This information is very useful in defining the environmental 
configurations for soil classes. To obtain environmental configurations of soil classes 
from local soil surveyor, Zhu [18] developed a personal construct based approach for 
obtaining knowledge from local experts on environmental configuration. The approach 
employs fuzzy logic to express the environmental conditions where a soil type will 
develop fully (assigned a fuzzy membership of 1) and where the soil type does not 
develop at all (assigned a fuzzy membership of 0) and where the soil type develop 
at half (assigned a fuzzy membership value of 0.5). This approach of defining a prototype 
is available through the SoLIMSolutions software described later in this manuscript. 

The other source of knowledge on the environmental configuration for a soil class 
is existing soil maps where the spatial distribution of soil classes is portrayed. This type 
of maps would implicitly contain the information needed to define and characterize 
the environmental configuration for a soil class. Qi and Zhu [19] developed an inductive 
learning (decision tree) approach to extract environmental configurations for soil classes 
from soil maps. Cheng et al. [20] furthered this effort to make a use of the knowledge 
captured at the individual polygon level. This capability is also provided in the SoLIM 
Solutions software. 

Due to the fact these environmental configurations are extracted from human 
experts or from existing soil maps in the form of knowledge rules, soil prediction under 
the SoLIM approach using environmental configurations extracted in this way is referred 
to as “rule‐based”. It must be noted that this “rule‐based” is not the same as the relation-
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ships used in the statistical approaches for the following two reasons. The first is that 
these “rules” are not expressed in any fixed quantitative form as those in the statistical 
approaches. Second, these “rules” are used to describe the environmental configura-
tion, not to relate environmental covariates to soil property values directly. 

3.2. Characterization of environmental configuration 

Characterization of environmental configuration calls for 1) a comprehensive list 
of covariates that can effectively describe the geographic environment relevant to a soil 
property; 2) the hierarchy of these variables; 3) the spatial foot prints of the target soil 
properties. The current efforts environmental configuration characterization for the 
SoLIM approach has been focus on the development of comprehensive list of covariates 
with initial research underway on the other two. 

In addition to conventional soil covariates used to describe the soil formative envi-
ronment (climatic conditions, topographic conditions, geological conditions, vegetation 
conditions), the SoLIM effort has added two new environmental variables into the list. 
The first one is the fuzzy landscape positions (fuzzy slope components) characterizing slope 
positions (such as ridge top, shoulder slope, backslope, footslope and valley bottom) 
in the form of fuzzy membership value [21]. This way of characterizing slope positions 
allows the gradation from one slope position to another to be represented in the covariate 
dataset and makes the characterization more realistic than the Boolean slope partitioning. 

The other covariate developed is referred to as the surface dynamic feedback pat-
terns [22]. This variable describes how the land surface reflectance at a location changes 
over time. It is done by constructing a 3D surface describing the change of reflectance 
across spectral bands over time at a location using remote sensing techniques (Figure 2). 
It has been shown that the difference in reflectance surface between two points is related 
to the difference in soil conditions given that other environmental factors are the same [22]. 
Therefore, it has been effectively used to map spatial variation of soil particle composi-
tion over flat areas [23]. Recent developments in this area were able to relate reflectance 
to accumulative evaporation over time [24] and to relate to rainfall magnitude in an effort 
to correct the pattern for large area applications [25]. 

 

 
Fig. 2. Land surface dynamic feedback pattern of a location 
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4. SOFTWARE PLATFORMS AND OPERATIONS 

The SoLIM approach has been made available to users through two distinct plat-
forms. One is based on the desktop platform and the associated software is referred 
as SoLIMSolutions which is versioned by year. The other is based on the web platform 
which takes the advantages of the recent advancement in high performance computing 
and the cyber infrastructures. This platform is referred to as CyberSoLIM. Both of them 
are available through https://solim.geography.wisc.edu/software. This section provides 
an operational overview of these two platforms by first presenting the overall design 
of the platform and then by outlining the steps for conducting digital soil mapping using 
SoLIM under different circumstances. 

4.1. SoLIMSolutions 

SoLIMSolutions comes in a zip file. No special installation procedure is needed 
to install except unzipping the zip file into a directory where you want SoLIMSolutions 
to reside. The package also contains the tutorial data in the directory named Tutori-
al_Data as well as the online help file (SoLIMSolutions_Help.chm). There are two sets 
of documents to assist users to use SoLIMSolutions for soil mapping. The first, refer 
to it as the “Functionality manual”, is on the operation and functionality of the software 
which is contained in SoLIMSolutions_Help.chm and can be accessed through Help 
menu of the software. This manual is also available at the front webpage of SoLIMSolu-
tions. The second document, referred to as the “Procedure manual”, is on the detail 
procedures of DSM using SoLIMSolutions which is only available at the front page 
of SoLIMSolutions and it came with its own tutorial data sets. This document and 
the associated tutorial data were compiled for various workshops given on SoLIM. 
The entrance to SoLIMSolutions is SoLIMSolutions.exe which will lead to the interfaces 
shown in Figure 3. A comprehensive description of the functionality through the menus 
system shown in Figure 3 is given in the Help system. The steps to conduct DSM using 
SoLIMSolutions under major scenarios are described below. 

 
Fig. 3. Interface of SolIMSolution 2015 
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4.1.1. Digital soil mapping based on field samples 

Under this scenario users will use field soil samples as prototypes. These samples 
may not be well distributed over the area and may be limited in number, which normally 
cannot be used with the DSM techniques based on the First Law of Geography or the 
statistical principle, but these samples can be used for soil mapping under the SoLIM 
approach due to the fact that SoLIM is based on the Third Law of Geography which 
does not require samples to be of certain size nor specific spatial distribution. 

Step 1: Create a sample‐based project 
On the main menu of SoLIMSolutions, select “Project‐>New” to create a new 

project. Specify the project to be “sample_based”. 

Step 2: Add GIS data layers 
Spatial data on environmental covariates are used to characterize the environmental 

configuration at each sample point. Therefore, spatial data on these set of covariates 
need to be loaded into SoLIMSolutions to characterize the configuration. In the left 
project panel, you will see five sub‐nodes under the “GIS Database” node: “Climate 
Layers”, “Parent Material Layers”, “Topographic Layers”, “Vegetation Layers” and 
“Other Layers”. The environmental data layers can be loaded through these different 
sub‐nodes. These sub‐nodes are used to specify the hierarchy in the geographic 
configuration. 

Step 3: Add the samples 
Samples are the prototypes for digital soil mapping using the SoLIM approach. Each 

sample contains at least four pieces of information (Sample ID, X‐coordinate, Y‐Coordi-
nate, Attribute). More than one attribute can be added for each point. The environmental 
configuration for each point does not need to be included in this sample point file because 
the environmental configuration can be easily defined once the location of the sample 
point is known and the spatial data on the covariates are loaded. The file containing 
the samples can be uploaded into SoLIMSolutions through the “Field Samples” node. 
It may be found that the panel on the right side will switch to a blank table correspond-
ingly. Press the “Load Sample Point Table” button on the top to load the samples into 
this table. 

Step 4: Run inference 
Once both the spatial data on the covariates and the sample points are loaded, the 

environmental configuration for each sample as well as for any location in the study 
is constructed automatically in SoLIMSolutions. With the environmental configurations 
constructed, similarity in environmental configuration between each of the samples and 
any unsampled location can be computed. These similarities can then be used to predict 
the soil property value at the unsampled location by combining these similarities and 
the attribute values at the sample points involved using Equation 1. The “Inference” 
node will allow to perform the prediction. 

Step 5: Result visualization 
The results from the inference above can be viewed through the Visualization menu. 

The 2D tool is the in‐house viewer in SoLIMSolutions but the 3D tool requires the 
installation of 3dMapper which is also available at the SoLIM software website. 
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Step 6: Validation 
For validation, you need a set of independent validation samples which should be 

collected independently from the samples used as the prototypes. The validation samples 
are stored in a text file using the following format: SampleID, X‐Coordinate, Y‐Coordi-
nate, SoilPropertyValue. The coordinate system used to define the locations of samples 
should be the same as that used for the spatial data as well as for the prototype samples. 
Validation is done through the “Property Validation” under the “Validation” menu. 

4.1.2. Digital soil mapping based on knowledge 
from soil experts 

The steps below describe the scenario when users only have local soil experts 
to provide the definition of the prototypes. The procedures given below are based 
on the assumption that users have obtained the knowledge from local experts on the pro-
totypes. Figure 4 illustrates an example of such information. In this example, the know-
ledge on the prototypes of 4 soil classes is given. The environmental configuration for 
each of them was characterized by three environmental variables (Gradient, Elevation, 
and Profile curvature). The values for these environmental variables constitute the con-
figuration. The soil A‐horizon depth is the soil property. 

 

 
Fig. 4. Example of knowledge on the prototypes of soil classes 

Below are the procedures for digital soil mapping based on this knowledge and 
the details of the steps are given in the Procedure manual. 
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Step 1: Create a rule‐based project 
To conduct DSM with SoLIMSolutions, you need to create a rule‐based project 

due to the fact that the knowledge obtained on prototypes is described in the form of 
rules. Choose “Project ‐> new” on the main menu and specify the project type to be 
“rule‐based”. 

Step 2: Create a GIS database for environmental configuration 
Users now add the GIS data layers which are used to describe the environmental 

configurations. In this example, users need to add the GIS data layers on slope gradient, 
elevation, and profile curvature into the project. This is done by right clicking “GIS 
Database” under “Rule‐based project” and select “Add Layer”. Users can then add each 
of these GIS data layers into the project database. 

Step 3: Define the prototypes for each soil class 
For each class, users need to define the prototype representing this class using 

the knowledge extracted from local soil experts (such as these in Figure 4). This is done 
through fuzzy membership curve definition by right clicking on the “Knowledge Base” 
under “Rule based Project” and choose “Add Soil Type” and then for each soil type users 
define the typical environmental condition for this soil to develop under the given 
environmental variable, and the condition where the soil class will never develop and 
the value where the soil class will be halfway developed. Operational details of this task 
are provided in both the Functionality manual and the Procedure manual. 

Step 4: Generate fuzzy membership maps of each soil class 
Now users can compute the similarity of each location in the study area to the 

prototype of each soil class. The similarity is expressed as a fuzzy membership value. 
Fuzzy membership values to the prototype of a given soil class for all locations in the area 
make up a fuzzy membership map of that class. Generation of fuzzy membership maps 
is done through the “Inference” panel. Select the soil types to be inferred and specify 
where to save the result and the output format. 

Step 5: Generate hardened soil map 
If a soil class map is desired, users can achieve that through the “Hardened Map” 

hardening function under “Product Deviation” on the main menu. Add the fuzzy mem-
bership maps of the soil classes to be included in the soil class map and specify 
the output location. By hardening each location will be assigned a soil type to which 
the location has the maximum membership. Through this hardening process uncertainty 
maps associated with the creation of this hardened soil map are produced. 

Step 6: Generate soil property map 
Another product that can be derived from the fuzzy membership maps is soil 

property map. A look‐up table that lists the typical soil property of each soil type should 
be prepared first. A weighted average approach as shown in Equation 1 is used to get 
the final soil property for each location. The “Property Map” function under the “Product 
Derivation” menu can be used to accomplish this task. 
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Step 7: Validation 
Property map validation can be done using the step 6 in 4.1.1 Digital soil mapping 

based on field samples. For validating the soil class map produced in Step 5 above, you 
also need a set of independent validation samples. The validation samples are stored 
in a text file in one of the predefined formats (see the Functionality Manual for details). 
Validation of soil class map is done through the “Type Validation” under the “Vali-
dation” menu. 

4.1.3. Digital soil mapping based on knowledge from soil maps 

Under this scenario, users are using knowledge from soil maps to define the proto-
types for soil concepts (such as soil classes). The knowledge needed is characterized 
through a spatial data mining techniques [20]. Figure 5 illustrates the general process 
of mining knowledge for prototypes from existing soil maps. Due to the fact that 
the knowledge used to define prototypes are in the form of rules extracted from the soil 
maps, users need to set up the project as the “Rule‐based Project” for this. 

 

 
Fig. 5. Spatial data mining for knowledge defining the prototypes 

from existing soil maps 

Step 1: Knowledge extraction from existing soil maps 
The two elements needed for knowledge extraction from soil maps are: 1) a GIS 

database containing spatial data on environmental variables for defining the configura-
tion; and 2) an existing soil map from which the knowledge on the prototypes of the 
mapped soil classes will be extracted. Once these are ready, select “Knowledge 
Acquisition‐>From Map” to start SoLIM‐Knowledge Miner. 

Step 2: Analysis of the extracted knowledge 
The knowledge extracted from the existing maps may contain noise. The Know-

ledge‐Miner in SoLIMSolutions allows the user(s) to increase the quality of knowledge 
by removing noises through knowledge analysis and editing. Knowledge analysis is 
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normally performed for every combination of map unit (soil class presented by polygon) 
and environmental data layer. Go to “Knowledge → Analyze ...” to start the knowledge 
analysis interface. When finished with editing, users can save the edits. Right click on 
the curve and choose “Save Knowledge Curve”, the curve will be saved in a .txt file. 

Step 3: Knowledge import into SoLIMSolutions for soil mapping 
The generated curves from step 2 can be imported into SoLIMSolutions for soil 

mapping. The import can be accomplished during the definition of a new rule to associate 
a prototype with an environmental variable (Step 3: Define the prototypes for each soil 
class described in 4.1.2 Digital soil mapping based on knowledge from soil experts). 
In order to use the knowledge extracted in step 2 above, the type of the new rules needs 
to be “Freehand Rule”. Click “Import From Data Mining Result” and specify the 
knowledge curve file (.txt file). The specified curve will be imported. 

After all rules needed are added users can conduct inference soil type. The rest 
of steps are the same as in 4.1.2 (Digital soil mapping based on knowledge from 
soil experts). 

4.2. CyberSoLIM 

CyberSoLIM is another way to conduct DSM under the SoLIM framework and 
is a part of large framework, referred to as Easy Geographic Computing (EGC) contributed 
from the SoLIM group (Figure 6). It is a computing platform powered by intelligent geo‐
computing and high performance computing techniques. It provides a visual environment 
for easily constructing and executing DSM models for non‐experts. The goal is to ac-
complish digital soil mapping tasks anywhere and anytime. CyberSoLIM provides 
a heuristically driven, visually assisted, high performance computing enabled cyber 
environment for digital soil mapping [26]. It exists in cyber space and can be accessed 
through the website stated above. 

 

 
Fig. 6. CyberSoLIM through Easy Geographic Computing 
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At the time of this writing, CyberSoLIM is only capable of conducting DSM using 
the sample‐based approach and is undergoing a major change in architecture and func-
tionality. The description provided below is based on an earlier version of CyberSoLIM 
and includes data management, model construction, and model execution. 

4.2.1. Data management 

The current implementation of CyberSoLIM is for DSM under the sample‐based 
approach using the SoLIM approach. Thus, we need both spatial data on environmental 
covariates and sample data. Due to the fact that it is based on cyber infrastructure, 
CyberSoLIM stores these data (environmental and samples) in cloud. The data manage-
ment functionality of CyberSoLIM manages these data for users. Environmental data 
layers are required in “GeoTiff” format whose filename extension is .tif. The spatial 
reference (coordinate system) of all data should be consistent (the same). The samples 
locations should be in the same coordinate system as well and must be stored in .csv 
format. The easiest way to do this is to enter the field sample data into a spreadsheet 
and save it as a .csv file. In the table, there are at least three columns: X, Y and soil 
attributes and the file should contain a column heading so that it is clear which 
column is what. 

The data a user uploaded to CyberSoLIM are under the control of the user through 
user account so the user can decide how the data are shared under CyberSoLIM. There 
are three basic modes for data sharing under CyberSoLIM. The most secure mode is 
that a user does not share any data with anyone. In this mode, the user is not able to 
access data shared by others except the data that are publically available. The next level 
is that a user shares the data with groups of the user’s choice. In this case the user will 
be able to access the data these groups share within the group. The third level is that 
a user share data with anyone under CyberSoLIM. In this case any data that are shared 
by others publically will be available to this user. The level of sharing can be assigned 
to individual data set. 

4.2.2. Model construction 

One of the key striking features of CyberSoLIM is the intelligent and automatic 
model building of DSM work flow. With CyberSoLIM users are presented with a map 
of the world. A user can navigate to a study area of interest. Right clicking on the area 
for DSM will bring the user an interface similar to what shown in Figure 7. Once 
“Digital Soil Mapping” is selected, the user will be taken to the model construction 
view (Figure 8) where the basic soil mapping structure is presented through the connec-
tion of three ellipses and one rectangle. The ellipse labeled “Property Map” is for the 
user to define the output file for the resultant soil property map and the one labeled 
“Sample Data” is for the user to specify the file which contains the sample data set 
to be used. 
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Fig. 7. Intelligent DSM model construction under CyberSoLIM 

 
Fig. 8. The model construction view 

The ellipse labeled with “Env. Layers Management” is for the user to define 
the environmental covariates to be used. Once the set of covariates is defined through 
this ellipse, the user will be presented with something as shown in Figure 9. Each of 
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the ellipses describes a covariate. The user can associate a data set to this covariate by 
right‐clicking the ellipse, which will open a dialog box asking whether the user wants 
to provide a data set to it or the user wants CyberSoLIM to compute it. For variables 
such as TWI, slope gradient, profile curvature and planform curvature CyberSoLIM 
will be able to automatically compute them once the user specifies the gridded digital 
terrain model. For some of the covariates which use a common set of computing 
techniques, CyberSoLIM will automatically connect these techniques in a flow work 
(Figure 10). Once all of these covariates have been associated with a proper dataset, 
the model can be saved for later use. 

 
Fig. 9. Environmental covariates definition under CyberSoLIM (from [26]) 

 
Fig. 10. A workflow model for DSM under CyberSoLIM 
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4.2.3. Model execution 

Once all the environmental data and the soil sample data are set, the DSM model 
(workflow) has been constructed and is ready to be executed. The execution of the model 
is not done locally. In fact, the DSM model as captured in the work flow is sent to the 
high performance computer hosting CyberSoLIM and the work flow is then translated 
into executable web services and executed in the order specified in the work flow. This 
can be invoked by right-click on “Sample Based Mapping” and select run. The user can 
also click on “Operation Parameters” in “the Sample Based Mapping” box to adjust the 
parameters of the digital soil mapping model to customize this model. The result from 
the model will be presented through a web link once the execution is completed. It can 
be downloaded following this link and visualized in CyberSoLIM. 

It is clear through this illustration, CyberSoLIM eliminates many tedious tasks for 
data preparation through intelligent model construction. GIS data preparation often 
becomes the bottle‐neck for non‐GIS specialists in their efforts in DSM. Under 
CyberSoLIM only a few source data layers (such as DEM, temperature, precipitation, 
remote sensing and geology) are needed, which dramatically reduce the burden on the 
users in data preparation. The other advantage is that computation is done using a high 
performance infrastructure which not only improve the speed of DSM but also removes 
the worry of maintaining computing hardware from users. 

5. FUTURE RESEARCH ISSUES 

The SoLIM approach is rather new, not only from the perspective of its methodo-
logical development but more importantly from the perspective of theoretical foundation 
(the application of the Third Law of Geography). Many research issues both in methodo-
logical and theoretical developments need further studying. We here highlight only a few 
which we think are key to the advancement of DSM under the Third Law of Geography 
and extend invitations to anyone who wants to collaborate to advance the research 
in these and other areas. 

The first research issue is related to environmental configuration. As shown 
in Section 2.1, characterization of environmental configuration consists of three basic 
aspects. Aspect 1 is a comprehensive lists of environmental covariates which can 
effectively describe the environmental configuration for a given soil property. Although 
efforts are made in developing new variables [21, 24, 25], research efforts are needed 
in fuzzy landform characterization (such as plain, hills), dynamic vegetation growing 
conditions, creation of dynamic surface feedback patterns over large area. 

Aspect 2 is the hierarchy of covariates for characterizing environmental configura-
tions under the Third Law of Geography. There is little research on this. Research efforts 
are desired on questions such as following. What is the impact of hierarchy of covariates 
on environmental configuration characterization? How should the covariates be struc-
tured so that the characterization is more effective? Aspect 3 is the footprint for 
characterizing environmental configuration at a location for DSM [27]. Questions, 
such as: What is the footprint (neighborhood size) of environmental configuration for 
a given soil property? Is there a common footprint for all soil properties? — deserve 
more attention. 
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The second research issue is about sample verification. In SoLIM under the Third 
Law of Geography, the representativeness of a single sample is used. There is no doubt 
that this representativeness is extremely sensitive to the quality of this sample. The 
research question would be how to evaluate and increase the reliability of the soil 
samples under the Third Law of Geography and how this reliability impacts the quality 
of predicted soil map [28, 29]. 

The third research issue is knowledge extraction and integration for prototypes. 
Knowledge on environmental configurations about soil prototypes exist in various forms 
(paper maps, soil samples, survey reports etc.). Each of these forms has advantages 
and disadvantages as to the comprehensiveness and quality of the knowledge [30, 31]. 
Techniques are needed to extract knowledge from these various forms and integrate them 
into a holistic representation [30, 32]. 

The fourth research issue is the further development of CyberSoLIM. As it can be 
seen from above presentation, CyberSoLIM has two defining characteristics: the auto-
matic construction of DSM work flow and the execution of the work flow using high 
performance computing. The automatic construction of work flow can drastically reduce 
the burden of users for knowledge on DSM work flow and the burden on conducting 
the analysis needed in the work flow. Sharing of analytical methods which can be used 
as web services are the bottleneck for systems like CyberSoLIM. The execution of DSM 
tasks on cyber platforms, particularly over platforms based on cloud infrastructure, 
demands new approaches to spatial data management and load management. Collabora-
tive efforts in the deployment of cyber techniques in DSM are much needed. 

6. CONCLUSIONS 

This paper presents an overview of the SoLIM approach in light of the laws 
of geography and statistical principle used in DSM. The SoLIM approach was developed 
based on important geographic principle, now referred to as the Third Law of Geography. 
With SoLIM DSM does not require soil samples to be over certain size nor to be of 
specific spatial distribution. This dramatically reduces requirements for DSM. 

The Third Law of Geography calls for the use of similarity in environmental (geo-
graphic) configuration between locations and uses this similarity for soil prediction. 
The SoLIM approach implemented the similarity of environmental configuration through 
the use of soil prototypes which can be defined by central concepts of soil classes or by 
field soil samples. This dramatically increases the sources available for defining soil 
prototypes, with the possibility of reducing the burden on collecting extensive new soil 
samples. The uncertainty derived based on similarities will also effectively target where 
the additional samples are needed to improve the quality of products efficiently. 

The SoLIM approach are provided in two platforms: SoLIMSolutions and Cyber-
SoLIM. SoLIMSolution is a desktop deployment and contains more comprehensive set 
of functionality for DSM while CyberSoLIM is a new effort to increase the availability 
as well as computational efficiency by using cyber infrastructures and intelligent 
computing techniques. All of these make SoLIM more applicable over large and complex 
geographic areas, easily available to people less savvy in geospatial analysis, and more 
efficient in the use of resources. 
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Ключевыми проблемами, с которыми сталкиваются многие из существующих подходов циф-
рового картографирования почв (DSM), являются жесткие требования к размеру проб почвы, 
необходимой для построения соответствующих взаимосвязей и обеспечения их устойчивости. Эти 
требования ограничивают применение методов DSM. В статье представлен обзор подхода SoLIM 
и специфика его использования через доступные программные платформы. SoLIM базируется 
на Третьем законе географии, который требует сравнения сходства в географическом (экологиче-
ском) положении прототипа и места без выборки, а использования этого сходства для прогнозирова-
ния значения свойства почвы в заданном месте. Реализация цифрового картографирования почв 
в рамках подхода SoLIM устраняет требование к размеру выборки и устойчивости взаимосвязей. 
Кроме того, неопределенность, рассчитанная на основе сходства, может быть использована для по-
вышения эффективности усилий по уменьшению размера ошибок. Подход SoLIM реализован на двух 
платформах: SoLIM Solutions и CyberSoLIM. Теоретическое обоснование и наличие программных 
платформ для SoLIM открывают возможности для использования DSM в больших и сложных 
географических регионах. 

Ключевые слова: цифровое почвенное картирование, DSM, SoLIM, Первый закон географии, 
Второй закон географии, Третий закон географии, пространственное прогнозирование 




