Cover Page

Cite item


Analysis of usage of satellite data in agricultural insurance was conducted. Main peculiarities and ways of potential usage were listed. It was highlighted that satellite data can be successfully used for crop monitoring, risks and damages assessment, as well as for pastures monitoring. The perspectives of usage of UAV images instead of satellite data for small areas were noted.

About the authors

I Yu Savin

Peoples’ Friendship University of Russia

Email: savin_iyu@pfur.ru
Moscow, 117198, Russian Federation

I S Kozubenko

Ministry of Agriculture of Russia

Email: dit@mcx.ru
Moscow, 107078, Russian Federation


  1. Wikipedia Insurance. Available from: http://en.wikipedia.org/wiki/Insurance [Accessed 15th April 2017].
  2. Herbold J. New approaches to agricultural insurance in developing economies // Finance for Food. Springer, Berlin, Heidelberg. 2014. P. 199-217.
  3. Towery N.G., Eyton J.R., Changnon Jr S.A., Dailey C.L. Remote sensing of crop hail damage. Illinois State Water Survey, 1975.
  4. Towery N.G. Some applications of remote sensing of crop-hail damage in the insurance industry. Circular 143/80 of the Illinois State Water Survey. Urbana, USA: Illinois Institute of Natural Resources, 1980.
  5. Alexander D., Smith K. Environmental hazards: assessing risk and reducing disaster // Progress in Physical Geography. 1993. Vol. 17. P. 504-504.
  6. Young F.R., Apan A., Chandler O. Crop hail damage: insurance loss assessment using remote sensing // Mapping and resource management: proceedings of RSPSoc2004. 2004.
  7. Rojas O., Vrieling A., Rembold F. Assessing drought probability for agricultural areas in Africa with coarse resolution remote sensing imagery // Remote sensing of Environment. 2011. Vol. 115. № 2. P. 343-352.
  8. Mathieu P.P. Space for Insurance. Environmental Finance. Available from: http://www.eomd.esa.int/files/document/131-176-149-30_200562910165.pdf [Accessed 15th April 2017].
  9. Савин И.Ю. и др. Спутниковый мониторинг воздействия засухи на растительность (на примере засухи 2010 года в России) // Современные проблемы дистанционного зондирования Земли из космоса. 2011. Т. 8. №. 1. С. 150-162.
  10. Tapiador F.J., Turk F.J., Petersen W., Hou A.Y., García-Ortega E., Machado L.A. et al. Global precipitation measurement: Methods, datasets and applications // Atmospheric Research. 2012. Vol. 104. P. 70-97.
  11. Damron JJ. Comparing Digital Flood Insurance Rate Maps (DFIRMS) to Interferometric Synthetic Aperture Radar (IFSAR) Products. No. ERDC/TEC-TR-01-1. Engineer research and development center Alexandria VA topographic engineering center, 2000.
  12. Sanders R., Shaw F., MacKay H., Galy H., Foote M. National flood modelling for insurance purposes: using IFSAR for flood risk estimation in Europe // Hydrology and Earth System Sciences Discussions. 2005. Vol. 9. № 4. P. 449-456.
  13. Peters A.J., Griffin S.C., Viña A., Ji L. Use of remotely sensed data for assessing crop hail damage // PE&RS, Photogrammetric Engineering & Remote Sensing. 2000. Vol. 66. № 11. P. 1349-1355.
  14. Smith A.M., Daub N., Nadeau C. Assessing hail damage in agricultural crops using MERIS data // Proceedings of the 26th Canadian Symposium on Remote Sensing, 14-16 June 2005, Wolfville, Canada. 2005. P. 365-371.
  15. Apan A., Chandle, O., Young F., Maraseni T. Opportunities and limitations of remote sensing for crop loss (hail damage) assessment in the insurance industry // Proceedings of the Spatial Sciences Institute Biennial Conference: Spatial Intelligence, Innovation and Praxis (SSC2005), 14-16 September 2005, Melbourne, Australia. 2005. P. 19-28.
  16. Capellades M.A., Reigber S., Kunze M. Storm damage assessment support service in the US Corn belt using RapidEye satellite imagery // Remote Sensing for Agriculture, Ecosystems, and Hydrology XI. International Society for Optics and Photonics. 2009. Vol. 7472. P. 747208.
  17. Савин И.Ю., Вернюк Ю.И., Фараслис И. Возможности использования беспилотных летательных аппаратов для оперативного мониторинга продуктивности почв // Бюллетень Почвенного института им. В.В. Докучаева. 2015. №. 80.
  18. Hobbs T.J. The use of NOAA-AVHRR NDVI data to assess herbage production in the arid rangelands of Central Australia // International Journal of Remote Sensing. 1995. Vol. 16. № 7. P. 1289-1302.
  19. Goward S.N., Tucker C.J., Dye D.G. North American vegetation patterns observed with the NOAA-7 advanced very high resolution radiometer // Vegetatio. 1985. Vol. 64. № 1. P. 3-14.
  20. Al-Bakri J.T., Taylo, J.C. Application of NOAA AVHRR for monitoring vegetation conditions and biomass in Jordan // Journal of Arid Environments. 2003. Vol. 54. № 3. P. 579-593.
  21. Fuller D.O. Trends in NDVI time series and their relation to rangeland and crop production in Senegal, 1987-1993 // International Journal of Remote Sensing. 1998. Vol. 19. № 10. P. 2013-2018.
  22. Prince S.D. Satellite remote sensing of primary production: comparison of results for Sahelian grasslands 1981-1988 // International Journal of Remote Sensing. 1991. Vol. 12. № 6. P. 1301-1311.
  23. Tucker C.J., Vanpraet C.L., Sharman M.J., Van Ittersum G. Satellite remote sensing of total herbaceous biomass production in the Senegalese Sahel: 1980-1984 // Remote sensing of environment. 1985. Vol. 17. № 3. P. 233-249.
  24. Hellmuth M.E., Osgood D.E., Hess U., Moorhead A., Bhojwani H. Index insurance and climate risk: Prospects for development and disaster management. New York, USA: International Research Institute for Climate and Society (IRI), 2009.
  25. Chantarat S., Mude A.G., Barrett C.B., Carter M.R. Designing index-based livestock insurance for managing asset risk in northern Kenya // Journal of Risk and Insurance. 2013. Vol. 80. № 1. P. 205-237.
  26. Rao K.N. Index based crop insurance // Agriculture and agricultural science procedia. 2010. Vol. 1. P. 193-203.
  27. Bokusheva R., Spivak L., Vitkovskaya I., Kogan F., Batyrbayeva M. Application of remotesensing data in the index-based insurance design // Geoscience and Remote Sensing Symposium (IGARSS), IEEE International. 2012. P. 5311-5314.
  28. Bobojonov I., Aw-Hassan A., Sommer R. Index-based insurance for climate risk management and rural development in Syria // Climate and Development. 2014. Vol. 6. № 2. P. 166-178.
  29. Patankar M. Comprehensive risk cover through remote sensing techniques in agriculture insurance for developing countries: A pilot project // ILO Microinsurance Innovation Facility Research Paper. 2011. № 6.
  30. Makaudze E.M., Miranda M.J. Catastrophic drought insurance based on the remotely sensed normalised difference vegetation index for smallholder farmers in Zimbabwe // Agrekon. 2010. Vol. 49. № 4. P. 418-432.
  31. Turvey C.G., Mclaurin M.K. Applicability of the Normalized Difference Vegetation Index (NDVI) in index-based crop insurance design // Weather, Climate, and Society. 2012. Vol. 4. № 4. P. 271-284.
  32. World Bank. Managing Agricultural Production Risk. The World Bank, Agriculture and Rural Development Department: Washington, USA, 2005.
  33. Johnson L. Agricultural index insurance through remote sensing: Experiences from east Africa // Remote Sensing Beyond Images; 2013. Available online: http://www.slideshare.net/ CIMMYT/l-johnson-sfsa-remote-sensing-public [Accessed 5th April 2017].
  34. Kidd C., Levizzani V. Status of satellite precipitation retrievals // Hydrology and Earth System Sciences. 2011. Vol. 15. № 4. P. 1109-1116.
  35. World Bank. NDVI Pasture Index-Based Insurance for Livestock Producers in South West Buenos Aires Province. Feasibility Study: Final Report. World Bank: Washington, USA, 2012.
  36. World Bank. NDVI Pasture Index-Based Insurance for Livestock Producers in URUGUAY. Feasibility Study: Final Report. World Bank: Washington, USA, 2013.
  37. Lou W., Ji Z., Sun K., Zhou J. Application of remote sensing and GIS for assessing economic loss caused by frost damage to tea plantations. Precision agriculture. 2013. Vol. 14. № 6. P. 606-620.
  38. Лупян Е.А., Барталев С.А., Савин И.Ю. Технологии спутникового мониторинга в сельском хозяйстве России // Аэрокосмический курьер. 2009. №. 6. С. 47-49.

Copyright (c) 2018 Savin I.Y., Kozubenko I.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies