Cover Page


Since Neolithic era, natural pigments have been added to foods and colour of food products is still one of the major concerns of food industry. Anthocyanins are the most noticeable group among coloured flavonoids, widely existing in the roots, stems and leaves as well as flowers and fruits of the vascular plants. They have a high potential for use as natural colorants instead of synthetic pigments because of their attractive colour and pharmacological properties. Stable and attractive colours are a highly valued attribute in competitive food industry. Considerable studies have been done on the effects of the most important chemical and physical factors involved in the stability of anthocyanins (temperature, light, pH, SO2, metal, sugar, ascorbic acid and oxygen), their concentrations, chemical structures, and matrix food compositions. Furthermore, the effects of separation technologies including microwave/ultrasound assisted extraction (MAE, UAE), and Colloidal Gaz Aphron (CGA) fractionation on the stability of anthocyanins are reviewed.

About the authors

Hocine Remini

University of Bejaia; University of Bouira

Bejaia, 06000, Algeria; Bouira, 10000, Algeria
Laboratoire de Biomathématique, Biophysique, Biochimie, et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia

Farid Dahmoune

University of Bejaia; University of Bouira

Bejaia, 06000, Algeria; Bouira, 10000, Algeria
Laboratoire de Biomathématique, Biophysique, Biochimie, et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia. Département de Biologie, Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre, Université de Bouira

Yasmine Sahraoui

University of Bejaia; University of Boumerdes

Bejaia, 06000, Algeria; Boumerdes, 35000, Algeria
Laboratoire de Biomathématique, Biophysique, Biochimie, et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia. Département de Biologie, Faculté des Sciences

Khodir Madani

University of Bejaia

Bejaia, 06000, Algeria
Laboratoire de Biomathématique, Biophysique, Biochimie, et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia

V N Kapranov

GNU Moscow Research Institute of Agriculture “Nemchinovka”


E F Kiselev

GNU Moscow Research Institute of Agriculture “Nemchinovka”



  1. Pifferi PG, Cultrera R. Enzymatic degradation of anthocyanins: the role of sweet cherry polyphenol oxidase. Journal of Food Science. 1974; 39(4):786-791. Available from: doi: 10.1111/j.1365-2621.1974.tb17980.x.
  2. Rustioni L, Di Meo F, Guillaume M., Failla O, Trouillas P. Tuning color variation in grape anthocyanins at the molecular scale. Food Chemistry. 2013; 141(4):4349-4357. Available from: doi: 10.1016/j.foodchem.2013.07.006
  3. Sari P, Wijaya CH, Sajuthi D, Supratman U. Colour properties, stability, and free radical scavenging activity of jambolan (Syzygium cumini) fruit anthocyanins in a beverage model system: Natural and copigmented anthocyanins. Food Chemistry. (2012); 132(4):1908-1914. Available from: doi: 10.1016/j.foodchem.2011.12.025
  4. Simões C, Brasil CHB, da Silva Cordeiro L, de Castro TC, Coutada LCM, da Silva AJR, Albarello N, Mansur E. Anthocyanin production in callus cultures of Cleome rosea: Modulation by culture conditions and characterization of pigments by means of HPLC- DAD/ESIMS. Plant Physiology and Biochemistry. 2009; 47(10):895-903. Available from: doi: 10.1016/j.plaphy.2009.06.005.
  5. Reque PM, Steffens RS, Jablonski A, Flôres SH, Rios ADO, de Jong EV. Cold storage of blueberry (Vaccinium spp.) fruits and juice: Anthocyanin stability and antioxidant activity. Journal of Food Composition and Analysis. 2014; 33(1):111-116. Available from: doi: 10.1016/j.jfca.2013.11.007.
  6. Hellström J, Mattila P, Karjalainen R. Stability of anthocyanins in berry juices stored at different temperatures. Journal of Food Composition and Analysis. 2013; 31(1):12-19. Available from: doi: 10.1016/j.jfca.2013.02.010
  7. Tiwari BK, O'Donnell CP, Cullen PJ. Effect of non thermal processing technologies on the anthocyanin content of fruit juices. Trends in Food Science & Technology. 2009; 20(3-4):137- 145. Available from: doi: 10.1016/j.tifs.2009.01.058.
  8. Dahmoune F, Madani K, Jauregi P, De Faveri DM, Spigno G. Fractionation of a red grape marc extract by colloidal gas aphrons. Chemical Engineering. 2013; 32. Available from: doi: 10.3303/CET1332318.
  9. Wrolstad RE, Durst RW, Lee J. Tracking color and pigment changes in anthocyanin products. Trends in Food Science & Technology. 2005; 16(9): 423-428. Available from: doi: 10.1016/j.tifs.2005.03.019.
  10. Soliva-Fortuny R, Balasa A, Knorr D, Martin-Belloso O. Effects of pulsed electric fields on bioactive compounds in foods: a review. Trends in Food Science & Technology. 2009; 20(11-12):544-556. Available from: doi: 10.1016/j.tifs.2009.07.003.
  11. Zhang HF, Yang XH, Wang Y. Microwave assisted extraction of secondary metabolites from plants: Current status and future directions. Trends in Food Science & Technology. 2011; 22(12):672-688. Available from: doi: 10.1016/j.tifs.2011.07.003.
  12. Van Duynhoven JPM, Van Velzen EJJ, Westerhuis JA, Foltz M, Jacobs DM, Smilde AK. Nutrikinetics: Concept, technologies, applications, perspectives. Trends in Food Science & Technology. 2012; 26(1):4-13. Available from: doi: 10.1016/j.tifs.2012.01.004.
  13. Andersen ØM, Jordheim M. The anthocyanins. In: Andersen ØM, Markham KR. (eds.) Chemistry, biochemistry and applications. 2nd ed. Boca Raton, FL: CRC Press; 2006. p. 452-471.
  14. Chandrapala J, Oliver C, Kentish S, Ashokkumar M. Ultrasonics in food processing - Food quality assurance and food safety. Trends in Food Science & Technology. 2012; 26(2):88-98. Available from: doi: 10.1016/j.tifs.2012.01.010.
  15. Huang HW, Hsu CP, Yang BB, Wang CY. Advances in the extraction of natural ingredients by high pressure extraction technology. Trends in Food Science & Technology. 2013; 33(1):54- 62. Available from: doi: 10.1016/j.tifs.2013.07.001.
  16. Troise AD, Fogliano V. Reactants encapsulation and Maillard reaction. Trends in Food Science & Technology. 2013; 33(1):63-74. Available from: doi: 10.1016/j.tifs.2013.07.002.
  17. Mateus N, De Freitas V. Anthocyanins as food colorants. In: Gould K, Davies K, Winefield C. (eds.) Anthocyanins: Biosyntheis, Functions, and Applications. New York: Springer; 2009. p. 238-304.
  18. Skrede C, Wrolstad RE. Flavonoids from berries and grapes. In: Shi J, Mazza G, Le Maguer M, and Boca R. (eds.) Functional foods: Biochemical and processing aspects. Boca Raton, Florida: CRC Press; 2002. 2:71-133.
  19. Ducamp-Collin MN, Lebrun M, Ramarson H, Self G. Anthocyanins and anthocyanin-degrading enzymes in Kwai May and Wai Chee cultivars of litchis grown in Reunion Island and Spain. Fruits. 2007; 62(6):353-359. Available from: doi: 10.1051/fruits:2007033.
  20. Lee YK, Khng HP. Natural color additives. In: Branen AL, Davidson PM, Salminen S, Thorngate III JH. (eds.) Food Science And Technology. New York: Marcel Dekker; 2002. p. 501-522.
  21. Linden G, Lorient D. New ingredients in food processing: Biochemistry and agriculture. Boca Raton: CRC Press; 1999. Available from: doi: 10.1201/9781439822760.
  22. Brat P, Tourniaire F, Amiot-Carlin MJ. Stability and Analysis of Phenolic Pigments. In: Socaciu C. (ed.) Food Colorants, Chemical and functional properties. USA: Taylor & Francis Group; 2008. p. 71-86.
  23. Andersen ØM, Daayf F, Lattanzio V. Recent advances in the field of anthocyanins - Main focus on structures. In: Daayf F, Lattanzio V. (eds.) Recent advances in polyphenol research. Singapore: Blackwell Publishing; 2008. 1:167-201.
  24. Gonzalez-Aguilar GA, Ayala-Zavala JF, de la Rosa LA, Alvarez-Parrilla E. Phytochemical changes in the postharvest and minimal processing of fresh fruits and vegetables. In: de la Rosa LA, Alvarez-Parrilla E, Gonzalez-Aguilar GA. (eds.) Fruit and vegetable phytochemicals: chemistry, nutritional value and stability. Singapore: Blackwell Publishing; 2010. p. 309-311.
  25. Giusti MM, Wallace TC. Flavonoids as Natural Pigments. In: Bechtold T, Mussak R. (eds.) Handbook of Natural Colorants. Chichester, West Sussex, UK: John Wiley & Sons; 2009. p. 255-275.
  26. Ribéreau-Gayon P, Glories Y, Maujean A, Dubourdieu D. Phenolic compounds. In: Ribereau Gayon P, Glories Y, Maujean A, Dubourdieu D. (eds.) Handbook of Enology: The Chemistry of Wine Stabilization and Treatments. Chichester, West Sussex, UK: John Wiley & Sons; 2006. p. 141-203.
  27. Vermerris W, Nicholson R. Chemical properties of phenolic compounds. In: Phenolic Compound Biochemistry. Dordrecht, Netherlands: Springer; 2006. p. 35-62. Available from: doi: 10.1007/978-1-4020-5164-7.
  28. Belitz HD, Grosch W, Schieberle P. Food chemistry. 4th ed. Germany: Springer Berlin Heidelberg; 2009. doi: 10.1007/978-3-540-69934-7.
  29. Dangles O, Dufour C. Flavonoid-protein binding processes and their potential impact on human health. In: Daayf F, Lattanzio V. (eds.) Recent advances in polyphenol research. Oxford, UK: Wiley-Blackwell; 2008. 1:67-87.
  30. Leonelli C, Veronesi P, Cravotto G. Microwave-assisted extraction: an introduction to dielectric heating. In: Chemat F, Cravotto G. (eds.) Microwave-assisted extraction for bioactive compounds. Boston, MA: Springer; 2013. p. 1-14. Available from: doi: 10.1007/978-1-4614- 4830-3_1.
  31. Motasemi F, Ani FN. A review on microwave-assisted production of biodiesel. Renew- able and Sustainable Energy Reviews. 2012; 16(7):4719-4733. Available from: doi: 10.1016/j.rser.2012.03.069.
  32. Chandrasekaran S, Ramanathan S, Basak T. Microwave food processing - A review. Food Research International. 2013; 52(1):243-261. Available from: doi: 10.1016/j.foodres.2013.02.033.
  33. Sonobe T, Hachiya K, Mitani T, Shinohara N, Ohgaki H. Microwave material processing for distributed energy system. In: Yao T. (ed.) Zero-Carbon Energy Kyoto 2011. Tokyo: Springer; 2012. p. 111-117. Available from: doi: 10.1007/978-4-431-54067-0_11.
  34. Ballard TS, Mallikarjunan P, Zhou K. Q, O'Keefe S. Microwave-assisted extraction of phenolic antioxidant compounds from peanut skins. Food Chemistry. 2010; 120(4):1185-1192. Available from: doi: 10.1016/j.foodchem.2009.11.063.
  35. Gude VG, Patil P, Martinez-Guerra E, Deng S, Nirmalakhandan N. Microwave energy potential for biodiesel production. Sustainable Chemical Processes. 2013; 1(1):5. Available from: doi: 10.1186/2043-7129-1-5.
  36. Chandrasekhar J, Madhusudhan MC, Raghavarao KSMS. Extraction of anthocyanins from red cabbage and purification using adsorption. Food and Bioproducts Processing. 2012; 90(4): 615-623. Available from: doi: 10.1016/j.fbp.2012.07.004.
  37. Wu XY, Liang LH, Zou Y, Zhao T, Zhao JL, Li F, Yang LQ. Aqueous two-phase extrac- tion, identification and antioxidant activity of anthocyanins from mulberry (Morus atro- purpurea Roxb.). Food Chemistry. 2011; 129(2):443-453. Available from: doi: 10.1016/j.foodchem.2011.04.097.
  38. Paula JT, Paviani LC, Foglio MA, Sousa IMO, Cabral FA. Extraction of anthocyanins from Arrabidaea chica in fixed bed using CO2 and CO2/ethanol/water mixtures as solvents. The Journal of Supercritical Fluids. 2013; 81:33-41. Available from: doi: 10.1016/j.supflu.2013.04.009.
  39. Paula JT, Paviani LC, Foglio MA, Sousa IMO, Duarte GHB, Jorge MP, Eberlin MN, Cabral FA. Extraction of anthocyanins and luteolin from Arrabidaea chica by sequential extraction in fixed bed using supercritical CO2, ethanol and water as solvents. The Journal of Supercritical Fluids. 2014; 86:100-107. Available from: doi: 10.1016/j.supflu.2013.12.008.
  40. Santos DT, Albarelli JQ, Beppu MM, Meireles MAA. Stabilization of anthocyanin extract from jabuticaba skins by encapsulation using supercritical CO2 as solvent. Food Research International. 2013; 50(2):617-624. Available from: doi: 10.1016/j.foodres.2011.04.019.
  41. Seabra IJ, Braga MEM, Batista MT, de Sousa HC. Effect of solvent (CO2/ethanol/H2O) on the fractionated enhanced solvent extraction of anthocyanins from elderberry pomace. The Journal of Supercritical Fluids. 2010; 54(2):145-152. Available from: doi: 10.1016/j.supflu.2010.05.001.
  42. Adjé F, Lozano YF, Lozano P, Adima A, Chemat F, Gaydou EM. Optimization of anthocyanin, flavonol and phenolic acid extractions from Delonix regia tree flowers using ultrasound-assisted water extraction. Industrial Crops and Products. 2010; 32(3):439-444. Available from: doi: 10.1016/j.indcrop.2010.06.011.
  43. Golmohamadi A, Möller G, Powers J, Nindo C. Effect of ultrasound frequency on antioxidant activity, total phenolic and anthocyanin content of red raspberry puree. Ultrasonics Sonochemistry. 2013; 20(5):1316-1323. Available from: doi: 10.1016/j.ultsonch.2013.01.020.
  44. Liazid A, Guerrero RF, Cantos E, Palma M, Barroso CG. Microwave assisted extraction of anthocyanins from grape skins. Food Chemistry. 2011; 124(3):1238-1243. Available from: doi: 10.1016/j.foodchem.2010.07.053.
  45. Yang Z, Zhai W. Optimization of microwave-assisted extraction of anthocyanins from purple corn (Zea mays L.) cob and identification with HPLC-MS. Innovative Food Science & Emerging Technologies. 2010; 11(3):470-476. Available from: doi: 10.1016/j.ifset.2010.03.003.
  46. Dahmoune F, Boulekbache L, Moussi K, Aoun O, Spigno G, Madani K. (2013). Valorization of Citrus limon residues for the recovery of antioxidants: Evaluation and optimization of micro- wave and ultrasound application to solvent extraction. Industrial Crops and Products. 50:77-87. Available from: doi: 10.1016/j.indcrop.2013.07.013.
  47. Garofulić IE, Dragović-Uzelac V, Jambrak AR, Jukić M. The effect of microwave assisted extraction on the isolation of anthocyanins and phenolic acids from sour cherry Marasca (Prunus cerasus var. Marasca). Journal of Food Engineering. 2013; 117(4):437-442. Available from: doi: 10.1016/j.jfoodeng.2012.12.043.
  48. Zheng X, Xu X, Liu C, Sun Y, Lin Z, Liu H. Extraction characteristics and optimal parameters of anthocyanin from blueberry powder under microwave-assisted extraction conditions. Separation and Purification Technology. 2013; 104:17-25. Available from: doi: 10.1016/j.seppur.2012.11.011.
  49. Li Y, Han L, Ma R, Xu X, Zhao C, Wang Z, Chen F, Hu X. Effect of energy density and citric acid concentration on anthocyanins yield and solution temperature of grape peel in microwave- assisted extraction process. Journal of Food Engineering. 2012; 109(2):274-280. Available from: doi: 10.1016/j.jfoodeng.2011.09.021.
  50. Grigoras CG, Destandau E, Zubrzycki S, Elfakir C. Sweet cherries anthocyanins: An envi- ronmental friendly extraction and purification method. Separation and Purification Technology. 2012; 100:51-58. Available from: doi: 10.1016/j.seppur.2012.08.032.
  51. Švarc-Gajić J, Stojanović Z, Carretero AS, Román DA, Borrás I, Vasiljević I. Development of a microwave-assisted extraction for the analysis of phenolic compounds from Rosmarinus officinalis. Journal of Food Engineering. 2013; 119(3):525-532. Available from: doi: 10.1016/j.jfoodeng.2013.06.030.
  52. Al Bittar S, Périno-Issartier S, Dangles O, Chemat F. An innovative grape juice enriched in polyphenols by microwave-assisted extraction. Food Chemistry. 2013; 141(3):3268-3272. Available from: doi: 10.1016/j.foodchem.2013.05.134.
  53. Shirsath SR, Sonawane SH, Gogate PR. Intensification of extraction of natural products using ultrasonic irradiations - A review of current status. Chemical Engineering and Processing: Process Intensification. 2012; 53:10-23. Available from: doi: 10.1016/j.cep.2012.01.003.
  54. Chandrapala J, Oliver C, Kentish S, Ashokkumar M. Ultrasonics in food processing. Ultrasonics Sonochemistry. 2012; 19(5):975-983. Available from: doi: 10.1016/j.ultsonch.2012.01.010.
  55. Paniwnyk L, Cai H, Albu S, Mason TJ, Cole R. The enhancement and scale up of the extraction of anti-oxidants from Rosmarinus officinalis using ultrasound. Ultrasonics Sonochemistry. 2009; 16(2):287-292. Available from: doi: 10.1016/j.ultsonch.2008.06.007.
  56. Chemat F, Khan MK. Applications of ultrasound in food technology: processing, preservation and extraction. Ultrasonics Sonochemistry. 2011; 18(4):813-835. Available from: doi: 10.1016/j.ultsonch.2010.11.023.
  57. Tao Y, García JF, Sun DW. Advances in wine aging technologies for enhancing wine quality and accelerating wine aging process. Critical Reviews in Food Science and Nutrition. 2013; 54(6):817-835. Available from: doi: 10.1080/10408398.2011.609949.
  58. Tao Y, Wu D, Zhang QA, Sun DW. Ultrasound-assisted extraction of phenolics from wine lees: Modeling, optimization and stability of extracts during storage. Ultrasonics Sonochemistry. 2014; 21(2):706-715. Available from: doi: 10.1016/j.ultsonch.2013.09.005.
  59. Ivanovic J, Tadic V, Dimitrijevic S, Stamenic M, Petrovic S, Zizovic I. Antioxidant properties of the anthocyanin-containing ultrasonic extract from blackberry cultivar “Čačanska Bestrna”. Industrial Crops and Products. 2014; 53:274-281. Available from: doi: 10.1016/j.indcrop.2013.12.048.
  60. Vieira GS, Cavalcanti RN, Meireles MAA, Hubinger MD. Chemical and economic evaluation of natural antioxidant extracts obtained by ultrasound-assisted and agitated bed extraction from jussara pulp (Euterpe edulis). Journal of Food Engineering. 2013; 119(2):196-204. Available from: doi: 10.1016/j.jfoodeng.2013.05.030.
  61. D’Alessandro LG, Dimitrov K, Vauchel P, Nikov I. Kinetics of ultrasound assisted extraction of anthocyanins from Aronia melanocarpa (black chokeberry) wastes. Chemical Engineering Research and Design. 2014; 92(10):1818-1826. Available from: doi: 10.1016/j.cherd.2013.11.020.
  62. Tiwari BK, Patras A, Brunton N, Cullen PJ, O’Donnell CP. Effect of ultrasound processing on anthocyanins and color of red grape juice. Ultrasonics Sonochemistry. 2010; 17(3):598-604. Available from: doi: 10.1016/j.ultsonch.2009.10.009.
  63. Veggi PC, Santos DT, Meireles MAA. Anthocyanin extraction from Jabuticaba (Myrciaria cauliflora) skins by different techniques: economic evaluation. Procedia Food Science. (2011). 1:1725-1731. Available from: doi: 10.1016/j.profoo.2011.09.254.
  64. Srivastava J, Vankar PS. Canna indica flower: New source of anthocyanins. Plant Physiology and Biochemistry. 2010; 48(12):1015-1019. Available from: doi: 10.1016/j.plaphy.2010.08.011.
  65. Borges GDSC, Vieira FGK., Copetti C, Gonzaga LV, Fett R. Optimization of the extraction of flavanols and anthocyanins from the fruit pulp of Euterpe edulis using the response surface methodology. Food Research International. 2011; 44(3):708-715. Available from: doi: 10.1016/j.foodres.2010.12.025.
  66. Maran JP, Manikandan S, Nivetha CV, Dinesh R. Ultrasound assisted extraction of bioactive compounds from Nephelium lappaceum L. fruit peel using central composite face centered response surface design. Arabian Journal of Chemistry. 2017; 10:S1145-S1157. Available from: doi: 10.1016/j.arabjc.2013.02.007.
  67. Carrera C, Ruiz-Rodríguez A, Palma M, Barroso CG. Ultrasound assisted extraction of phenolic compounds from grapes. Analytica Chimica Acta. 2012; 732:100-104. Available from: doi: 10.1016/j.aca.2011.11.032.
  68. Nayak CA, Rastogi NK. Optimization of solid-liquid extraction of phytochemicals from Garcinia indica Choisy by response surface methodology. Food Research International. 2013; 50(2):550-556. Available from: doi: 10.1016/j.foodres.2011.02.033.
  69. Hurtado NH, Morales AL, González-Miret ML, Escudero-Gilete ML, Heredia FJ. Colour, pH stability and antioxidant activity of anthocyanin rutinosides isolated from tamarillo fruit (Solanum betaceum Cav.). Food Chemistry. 2009; 117(1):88-93. Available from: doi: 10.1016/j.foodchem.2009.03.081.
  70. Li J, Li XD, Zhang Y, Zheng ZD, Qu ZY, Liu M, Zhu SH, Liu S, Wang M, Qu L. Identification and thermal stability of purple-fleshed sweet potato anthocyanins in aqueous solutions with various pH values and fruit juices. Food Chemistry. 2013; 136(3-4):1429- 1434. Available from: doi: 10.1016/j.foodchem.2012.09.054.
  71. Spigno GIORGIA, Dermiki M, Pastori CHIARA, Casanova F, Jauregi P. Recovery of gallic acid with colloidal gas aphrons generated from a cationic surfactant. Separation and Purification Technology. 2010; 71(1):56-62. Available from: doi: 10.1016/j.seppur.2009.11.002
  72. Dermiki M, Gordon MH, Jauregi P. Recovery of astaxanthin using colloidal gas aphrons (CGA): A mechanistic study. Separation and Purification Technology. 2009; 65(1):54-64. Available from: doi: 10.1016/j.seppur.2007.12.023
  73. Leonelli C, Veronesi P, Cravotto G. Microwave-assisted extraction: An introduction to dielectric heating. In: Chemat F, Cravotto G. (eds.) Microwave-assisted Extraction for Bioactive Compounds. Boston, MA: Springer; 2013. p. 1-14. Available from: doi: 10.1007/978-1-4614-4830-3_1



Abstract - 1390

PDF (English) - 554




Copyright (c) 2018 Remini H., Dahmoune F., Sahraoui Y., Madani K., Kapranov V.N., Kiselev E.F.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies