Galactooligosaccharide effects as prebiotic on intestinal microbiota of different fish species

Cover Page

Cite item

Abstract

Manipulation of the gut microbiota toward potentially beneficial bacteria (probiotics) has beneficial effects on fish physiology and health. The effects of prebiotics on gut microbiota are species specific. The present study aimed at investigation of the effects of galactooligosaccharide (GOS) as prebiotic on intestinal microbiota of Caspian roach and Caspian white fish fingerlings. which are among the most economically valuable species in the Caspian Sea. The study was conducted in a completely randomized design with two set of experiment each of them include three treatments in triplicates in which 0 (control), 1 and 2% GOS were used in diet for 6 weeks. At the end of the period, changes in the intestinal microbiota, including total bacterial count, lactic acid count and lactic acid bacteria (LAB) levels and dominance of LAB in the intestinal microbiota, were measured by culture-based method. Dietary GOS had no significant effect on total bacterial count in both species (P < 0.05). The LAB levels in the intestinal microbiota in the treatments fed with prebiotics was significantly higher than the control group (P < 0.05). LAB bacteria showed the highest increase and dominance in treatments fed with 2% GOS. Also, the highest ratio of lactic acid bacteria to the total number of viable bacteria was observed in the treatment with 2% GOS treatment (P < 0.05). The results of this study indicated the possibility of alterations in the bacterial communities of Caspian roach and Caspian white fish fingerlings gut toward beneficial bacterial communities using GOS as prebiotic.

About the authors

Seyed Hossein Hoseinifar

Polytechnic University of Marche; Chiang Mai University

Author for correspondence.
Email: hossein.hoseinifar@gmail.com

Phd, Department of Life and Environmental Sciences

Ancona, Italy; Chiang Mai, Thailand

Hien Van Doan

Chiang Mai University

Email: hossein.hoseinifar@gmail.com

Phd, Department of Animal and Aquatic Sciences, Faculty of Agriculture

Chiang Mai, Thailand

Ghasem Ashouri

Polytechnic University of Marche

Email: hossein.hoseinifar@gmail.com

Department of Life and Environmental Sciences

Ancona, Italy

References

  1. Llewellyn MS, Boutin S, Hoseinifar SH, Derome N. Teleost microbiomes: the state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Frontiers in Microbiology. 2014; 5:207. doi: 10.3389/fmicb.2014.00207
  2. Nawaz A, Bakhsh javaid A, Irshad S, Hoseinifar SH, Xiong H. The functionality of prebiotics as immunostimulant: Evidences from trials on terrestrial and aquatic animals. Fish & Shellfish Immunology. 2018; 76:272—278. doi: 10.1016/j.fsi.2018.03.004
  3. Lazado CC, Caipang CMA. Mucosal immunity and probiotics in fish. Fish & Shellfish Immunology. 2014; 39(1):78—89. doi: 10.1016/j.fsi.2014.04.015
  4. Van Doan H, Hoseinifar SH, Ringo E, Angeles Esteban M, Dadar M, Dawood MA, et al. Host-associated probiotics: A key factor in sustainable aquaculture. Reviews in Fisheries Science & Aquaculture. 2019; 1—27. doi: 10.1080/23308249.2019.1643288
  5. Ringo E, Hoseinifar SH, Ghosh K, Doan HV, Beck BR, Song SK. Lactic Acid bacteria in finfish—an update. Frontiers in Microbiology. 2018; 9:1818. doi: 10.3389/fmicb.2018.01818
  6. Merrifield DL, Balcázar JL, Daniels C, Zhou Z, Carnevali O, Sun YZ et al. Indigenous lactic acid bacteria in fish and crustaceans. In: Merrifield DL, Ringo E. (eds.) Aquaculture Nutrition: gut health, probiotics and prebiotics. Oxford: John Wiley & Sons; 2014. p.128—168.
  7. Doan HV, Hoseinifar SH, Esteban MÁ, Dadar M, Thu TTN. Mushrooms, seaweed, and their derivatives as functional feed additives for aquaculture: an updated view. Studies in Natural Products Chemistry. 2019; 62:41—90. doi: 10.1016/B978-0-444-64185-4.00002-2
  8. Ringo E, Zhou Z, Vecino JLG, Wadsworth S, Romero J, Krogdahl A, et al. Effect of dietary components on the gut microbiota of aquatic animals. A never-ending story? Aquaculture Nutrition. 2016; 22(2):219—282. doi: 10.1111/anu.12346
  9. Dawood MAO, Koshio S. Recent advances in the role of probiotics and prebiotics in carp aquaculture: A review. Aquaculture. 2016; 454:243—251. doi: 10.1016/j.aquaculture.2015.12.033
  10. Hoseinifar SH, Esteban MÁ, Cuesta A, Sun Y-Z. Prebiotics and fish immune response: A review of current knowledge and future perspectives. Reviews in Fisheries Science & Aquaculture. 2015; 23(4):315—328. doi: 10.1080/23308249.2015.1052365
  11. Lieke T, Meinelt T, Hoseinifar SH, Pan B, Straus DL, Steinberg CEW. Sustainable aquaculture requires environmental-friendly treatment strategies for fish diseases. Reviews in Aquaculture. 2019. doi: 10.1111/raq.12365
  12. Hoseinifar SH, Mirvaghefi A, Mojazi Amiri B, Rostami HK, Merrifield DL. The effects of oligofructose on growth performance, survival and autochthonous intestinal microbiota of beluga (Huso huso) juveniles. Aquaculture Nutrition. 2011; 17(5):498—504. doi: 10.1111/j.1365-2095.2010.00828.x
  13. Daniels C, Hoseinifar SH. Prebiotic Applications in shellfish. In: Merrifield LD, Ringo E (eds.) Aquaculture Nutrition: gut health, probiotics and prebiotics. Oxford: John Wiley & Sons; 2014. p.401—418.
  14. Zhou Q-C, Buentello JA, Gatlin Iii DM. Effects of dietary prebiotics on growth performance, immune response and intestinal morphology of red drum (Sciaenops ocellatus). Aquaculture. 2010; 309(1—4):253—257. doi: 10.1016/j.aquaculture.2010.09.003
  15. Burr G, Hume M, Ricke S, Nisbet D, Gatlin D. In Vitro and in vivo evaluation of the prebiotics GroBiotic®-A, inulin, mannanoligosaccharide, and galactooligosaccharide on the digestive microbiota and performance of hybrid striped bass (Morone chrysops × Morone saxatilis). Microbial ecology. 2010; 59(1):187—198. doi: 10.1007/s00248-009-9597-6
  16. Grisdale-Helland B, Helland SJ, Gatlin III DM. The effects of dietary supplementation with mannanoligosaccharide, fructooligosaccharide or galactooligosaccharide on the growth and feed utilization of Atlantic salmon (Salmo salar). Aquaculture. 2008; 283(1—4):163—167. doi: 10.1016/j.aquaculture.2008.07.012
  17. Yousefi S, Hoseinifar SH, Paknejad H, Hajimoradloo A. The effects of dietary supplement of galactooligosaccharide on innate immunity, immune related genes expression and growth performance in zebrafish (Danio rerio). Fish & Shellfish Immunology. 2018; 73:192—196. doi: 10.1016/j.fsi.2017.12.022
  18. Hoseinifar SH, Ahmadi A, Khalili M, Raeisi M, Van Doan H, Caipang CM. The study of antioxidant enzymes and immune-related genes expression in common carp (Cyprinus carpio) fingerlings fed different prebiotics. Aquaculture Research. 2017; 48(11):5447—5454. doi: 10.1111/are.13359
  19. Modanloo M, Soltanian S, Akhlaghi M, Hoseinifar SH. The effects of single or combined administration of galactooligosaccharide and Pediococcus acidilactici on cutaneous mucus immune parameters, humoral immune responses and immune related genes expression in common carp (Cyprinus carpio) fingerlings. Fish & Shellfish Immunology. 2017; 70:391— 397. doi: 10.1016/j.fsi.2017.09.032
  20. Guerreiro I, Couto A, Machado M, Castro C, Pousão-Ferreira P, Oliva-Teles A, et al. Prebiotics effect on immune and hepatic oxidative status and gut morphology of white sea bream (Diplodus sargus). Fish & Shellfish Immunology. 2016; 50:168—174. doi: 10.1016/j.fsi.2016.01.023
  21. Miandare HK, Farvardin S, Shabani A, Hoseinifar SH, Ramezanpour SS. The effects of galactooligosaccharide on systemic and mucosal immune response, growth performance and appetite related gene transcript in goldfish (Carassius auratus gibelio). Fish & Shellfish Immunology. 2016; 55:479—483. doi: 10.1016/j.fsi.2016.06.020
  22. Hoseinifar SH, Khalili M, Sun YZ. Intestinal histomorphology, autochthonous microbiota and growth performance of the oscar (Astronotus ocellatus Agassiz, 1831) following dietary administration of xylooligosaccharide. Journal of Applied Ichthyology. 2016; 32(6):1137— 1141. doi: 10.1111/jai.13118
  23. Rawling M, Merrifield D, Kühlwein H, Snellgrove D, Gioacchini G, Carnevali O, et al. Dietary modulation of immune response and related gene expression profiles in mirror carp (Cyprinus carpio) using selected exotic feed ingredients. Aquaculture. 2014; 418:177—184. doi: 10.1016/j.aquaculture.2013.10.002
  24. Van Doan H, Hoseinifar SH, Ringo E, Angeles Esteban M, Dadar M, Dawood MA, et al. Host-associated probiotics: a key factor in sustainable aquaculture. Reviews in Fisheries Science & Aquaculture. 2019; 1—27. doi: 10.1080/23308249.2019.1643288
  25. Hoseinifar SH, Sun Y, Wang A, Zhou Z. Probiotics as means of diseases control in aquaculture, A Review of current knowledge and future perspectives. Frontiers in Microbiology. 2018; 9:2429. doi: 10.3389/fmicb.2018.02429
  26. Van Doan H, Hoseinifar SH, Tapingkae W, Seel-audom M, Jaturasitha S, Dawood MA, et al. Boosted growth performance, mucosal and serum immunity, and disease resistance nile tilapia (Oreochromis niloticus) fingerlings using corncob-derived xylooligosaccharide and lactobacillus plantarum CR1T5. Probiotics and antimicrobial proteins. 2019; 1—12. doi: 10.1007/s12602-019-09554-5
  27. Dawood MAO, Koshio S, Esteban MA. Beneficial roles of feed additives as immunostimulants in aquaculture: a review. Reviews in Aquaculture. 2018; 10(4):950—974. doi: 10.1111/raq.12209
  28. Abdel-Tawwab M, Abdel-Rahman AM, Ismael NEM. Evaluation of commercial live bakers' yeast, Saccharomyces cerevisiae as a growth and immunity promoter for Fry Nile tilapia, Oreochromis niloticus (L.) challenged in situ with Aeromonas hydrophila. Aquaculture. 2008; 280(1—4):185—189. doi: 10.1016/j.aquaculture.2008.03.055
  29. Ringo E, Dimitroglou A, Hoseinifar SH, Davies SJ. Prebiotics in Finfish: an update. In: Merrifield DL, Ringo E. (eds.) Aquaculture nutrition: gut health, probiotics and prebiotics. Oxford: John Wiley & Sons; 2014. p.360—400. doi: 10.1002/9781118897263.ch14
  30. Hoseinifar SH, Mirvaghefi A, Merrifield DL. The effects of dietary inactive brewer's yeast Saccharomyces cerevisiae var. ellipsoideus on the growth, physiological responses and gut microbiota of juvenile beluga (Huso huso). Aquaculture. 2011; 318(1—2):90—94. doi: 10.1016/j.aquaculture.2011.04.043
  31. Mahious AS, Gatesoupe FJ, Hervi M, Metailler R, Ollevier F. Effect of dietary inulin and oligosaccharides as prebiotics for weaning turbot, Psetta maxima (Linnaeus, C. 1758). Aquaculture International. 2006; 14(3):219—229. doi: 10.1007/s10499-005-9003-4
  32. Akrami R, Ghelichi A, Manuchehri H. Effect of dietary inulin as prebiotic on growth performance and survival of juvenile rainbow trout (Oncorhynchus mykiss). Journal of marine science and technology research. 2009; 4(3):1—9.
  33. Li X, Ringo E, Hoseinifar SH, Lauzon HL, Birkbeck H, Yang D. The adherence and colonization of microorganisms in fish gastrointestinal tract. Reviews in Aquaculture. 2019; 11(3):603—618. doi: 10.1111/raq.12248
  34. Hoseinifar SH, Mirvaghefi A, Amoozegar MA, Merrifield D, Ringø E. In vitro selection of a synbiotic and in vivo evaluation on intestinal microbiota, performance and physiological response of rainbow trout (Oncorhynchus mykiss) fingerlings. Aquaculture Nutrition. 2015; 23(1):111—118. doi: 10.1111/anu.12373
  35. Reza A, Abdolmajid H, Abbas M, Abdolmohammad AK. Effect of dietary prebiotic inulin on growth performance, intestinal microflora, body composition and hematological parameters of juvenile beluga, Huso huso (Linnaeus, 1758). Journal of the World Aquaculture Society. 2009; 40(6):771—779. Available from: doi: 10.1111/j.17497345.2009.00297.x

Copyright (c) 2019 Hoseinifar S.H., Doan H.V., Ashouri G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies