Modified materials based on layered minerals as ameliorants for the remediation of podzol in the industrial barren

Abstract

Layered silicates, such as serpentine and vermiculite, have properties that make it possible to use materials based on them as components of environmental technologies. The possibility of soil remediation in industrially contaminated area, formed due to the long-term exposure to emissions from copper-nickel production (Monchegorsk, Murmansk region), was studied. Two materials were used as ameliorants in our study: expanded vermiculite and granular serpentine sorbent, a waste after using the purification technology of highly concentrated solutions from metals. These materials have a high sorption activity to several metals, a high specific surface area, the ability to retain moisture, and are available in quantities sufficient to work on the remediation of large areas. A study of the physicochemical properties of industrially polluted soil and ameliorants, direct phytotoxicity testing of podzol and its mixtures with expanded vermiculite and the serpentine sorbent (test plants - common oat Avéna satíva L. and red clover Trifolium praténse L.) were carried out. The study results showed that the proposed materials were effective additives for increasing the pH of acidic soil, sorption and precipitation of Al and potentially toxic metals - Cu, Ni, Pb, Fe, and improving the soil hydrophysical and agrochemical characteristics. A positive response of test plants to the introduction of ameliorants into industrially contaminated soil was noted.

Full Text

Fig. 1. Appearance of the research objects: а — general view; б — waste serpentine sorbent;  в — expanded vermiculite (fr. 0.45…2.00 mm); г — podzol (fr. < 2.0 mm)

 

Table 1. Composition of soil mixtures, weight,%

Soil mixture

S: M*(V:P)

S

V

P

VP-1

(1:1)

50

50

VP-2

(1:2)

33

67

VP-3

(1:4)

25

75

VSP-1

1:3(1:1)

25

37.5

37.5

VSP-2

1:3(1:2)

25

25

50

VSP-3

1:3(1:4)

25

15

60

VSP-4

1:4(1:1)

20

40

40

VSP-5

1:4(1:2)

20

26

54

VSP-6

1:4(1:4)

20

16

64

VSP-7

1:5(1:1)

16

42

42

VSP-8

1:5(1:2)

16

28

56

VSP-9

1:5(1:4)

16

16.8

67.2

*M — V and P mixtures.

 

Fig. 2. Granulometric composition of podzol

 

 

Fig. 3. Fractional composition of micro- and macrocomponents in industrially polluted podzol

Table 2. Change in the pH value of soil mixtures depending on the amount of added expanded vermiculite and waste sorbent

Duration of interaction

VP

VSP

1

2

3

1

2

3

4

5

6

7

8

9

1 hour

5.47

5.13

4.71

7.29

7.04

6.78

6.86

6.74

6.56

6.32

6.26

6.00

1 day

6.62

5.99

5.51

8.53

8.49

8.45

8.19

8.33

8.26

7.71

7.27

7.34

3 days

7.2

6.94

5.73

8.68

8.52

8.77

8.52

8.37

7.99

8.46

8.06

8.04

7 days

7.27

6.94

5.54

8.83

8.78

8.65

8.77

8.6

8.37

8.43

8.38

8.07

 

Fig. 4. Concentration of nutrient (a) and potentially toxic (б) elements in aqueous solutions of leaching of podzol and expanded vermiculite mixtures: V: P 1:1;  V: P 1:2;  V: P 1:4;  P

Fig. 5. Concentrations of nutrient (a) and potentially toxic (б) elements in aqueous leaching solutions of podzol P and expanded vermiculite V mixtures and waste serpentine sorbent S:     V: P 1:1;   V: P 1:2; …… V: P 1:3;  S:(V: P) 1:3; S:(V: P) 1:4; S:(V: P) 1:5

 

Fig. 6. Water retention curves of podzol P, expanded vermiculite V and soil mixtures based on them with the addition of waste serpentine sorbent VSP-1 1:3(1:1), VSP-2 1:3(1:2), VSP-4 1:4(1:1) VSP-9 1:5(1:4)

 

Fig. 7. Morphometric parameters of test crops 21 days after the start of the experiment: plant length (а, б) and biomass (в, г) of A. sativa (a, c) and T. pratense (б, г)

 

×

About the authors

Tatiana K. Ivanova

Kola Science Centre of the Russian Academy of Sciences

Author for correspondence.
Email: tk.ivanova@ksc.ru
ORCID iD: 0000-0002-8103-2279

Junior Researcher, Laboratory of Nature-Inspired Technologies and Environmental Safety of the Arctic region

14 Fersmana st., Apatity, Murmansk region, 184209, Russian Federation

Marina V. Slukovskaya

Kola Science Centre of the Russian Academy of Sciences ; RUDN University

Email: m.slukovskaya@ksc.ru
ORCID iD: 0000-0002-5406-5569

Senior Researcher, Laboratory of Nature-Inspired Technologies and Environmental Safety of the Arctic region; Department of Landscape Design and Sustainable Ecosystems

14 Fersmana st., Apatity, Murmansk region, 184209, Russian Federation; 8/2 Miklukho-Maklaya st., Moscow, 117198, Russian Federation

Irina A. Mosendz

Kola Science Centre of the Russian Academy of Sciences

Email: ia.mosendz@ksc.ru
ORCID iD: 0000-0003-3129-7305

Junior Researcher, Laboratory of Nature-Inspired Technologies and Environmental Safety of the Arctic region

14 Fersmana st., Apatity, Murmansk region, 184209, Russian Federation

Evgeniya A. Krasavtseva

Kola Science Centre of the Russian Academy of Sciences

Email: e.krasavtseva@ksc.ru
ORCID iD: 0000-0002-8821-4446

Junior Researcher, Laboratory of Nature-Inspired Technologies and Environmental Safety of the Arctic region

14 Fersmana st., Apatity, Murmansk region, 184209, Russian Federation

Victoria V. Maksimova

Kola Science Centre of the Russian Academy of Sciences

Email: v.maksimova@ksc.ru
ORCID iD: 0000-0002-5080-5187

Junior Researcher, Laboratory of Nature-Inspired Technologies and Environmental Safety of the Arctic region

14 Fersmana st., Apatity, Murmansk region, 184209, Russian Federation

Inna P. Kanareykina

RUDN University

Email: innesochkaaa@yandex.ru
ORCID iD: 0000-0003-1930-5050

Junior Researcher, Department of Landscape Design and Sustainable Ecosystems

8/2 Miklukho-Maklaya st., Moscow, 117198, Russian Federation

Anna A. Shirokaya

Kola Science Centre of the Russian Academy of Sciences

Email: a.shirokaia@ksc.ru
ORCID iD: 0000-0002-1325-2499

engineer, Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials

26a Akademgorodok st., Apatity, Murmansk region, 184209, Russian Federation

Irina P. Kremenetskaya

Kola Science Centre of the Russian Academy of Sciences

Email: i.kremenetskaia@ksc.ru
ORCID iD: 0000-0003-3531-8273

Senior Researcher, Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials

26a Akademgorodok st., Apatity, Murmansk region, 184209, Russian Federation

References

  1. Androkhanov VA. Pochvenno-ekologicheskoe sostoyanie tekhnogennykh landshaftov: dinamika i otsenka [Soil-ecological state of technogenic landscapes: dynamics and assessment] [Dissertation]. Novosibirsk; 2005. (In Russ.).
  2. Kavamura VN, Esposito E. Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnology advances. 2010; 28(1):61—69. doi: 10.1016/j.biotechadv.2009.09.002
  3. Koptsik GN. Modern approaches to remediation of heavy metal polluted soils: review. Pochvovedenie. 2014. №. 7. С. 851—868. (In Russ.). doi: 10.7868/S0032180X14070077
  4. Kozlov MV, Zvereva EL. Industrial barrens: extreme habitats created by non-ferrous metallurgy. Reviews in Environmental Science and Bio/Technology. 2007; 6(1):231—259. doi: 10.1007/s11157-006-9117-9
  5. Kalabin GV, Evdokimova GA, Gornyi VI. Estimation of dynamics of grows of derelict lands in process of deleterious effect decrease of OJSC «Severonickel combine» on environment. Gornyi zhurnal. 2010; (2):74—77. (In Russ.).
  6. Shishikin AS, Abaimov AP, Onuchin AA. Principles of research organization and methodology of natural ecosystems in regions under extreme technogenic impact. Siberian journal of ecologу. 2014; 21(6):863—871. (In Russ.).
  7. Smorkalov IA, Vorobeichik EL. Soil respiration of forest ecosystems in gradients of environmental pollution by emissions from copper smelters. Russian journal of ecology. 2011; 42(6):464—470. doi: 10.1134/ S1067413611060166
  8. Hafeez F, Martin-Laurent F, Béguet J, Bru D, Cortet J, Schwartz C, et al. Taxonomic and functional characterization of microbial communities in Technosols constructed for remediation of a contaminated industrial wasteland. Journal of Soils and Sediments. 2012; 12(9):1396—1406. doi: 10.1007/s11368-012-0563-4
  9. Kashulina GM, Pereverzev VN, Litvinova TI. Transformation of the soil organic matter under the extreme pollution by emissions of the Severonikel smelter. Eurasian Soil Science. 2010; 43(10):1174—1183. doi: 10.1134/S1064229310100108
  10. Kashulina GM. Extreme soil contamination by copper-nickel plant emissions on the Kola Peninsula. Soil Science. 2017; 50(7):837—849. doi: 10.1134/S1064229317070031
  11. Sarkar S, Sarkar B, Basak BB, Mandal S, Biswas B, Srivastava P. Soil mineralogical perspective on immobilization/mobilization of heavy metals. In: Adaptive Soil Management: From Theory to Practices Singapore: Springer; 2017. p.89—102. doi: 10.1007/978-981-10-3638-5_4
  12. Cao CY, Yu B, Wang M, Zhao YY, Wan X, Zhao S. Immobilization of cadmium in simulated contaminated soils using thermal-activated serpentine. Soil Science and Plant Nutrition. 2020; 66(3):499—505. doi: 10.1080/00380768.2020.1742583
  13. Zotiadis V, Argyraki A. Development of innovative environmental applications of attapulgite clay. Bull. Geol. Soc. Greece. 2013; 47(2):992—1001. doi: 10.12681/bgsg.11139
  14. Vhahangwele M, Mugera GW. The potential of ball-milled South African bentonite clay for attenuation of heavy metals from acidic wastewaters: Simultaneous sorption of Co2+, Cu2+, Ni2+, Pb2+, and Zn2+ ions. J. Environ. Chem. Eng. 2015; 3(4A):2416—2425. doi: 10.1016/j.jece.2015.08.016
  15. De la Calle C, Suquet H. Vermiculite. In: Bailey S. (ed.) Hydrous Phyllosilicates. Berlin, Boston: De Gruyter; 2018. p.455—496. doi: 10.1515/9781501508998-017
  16. Kremenetskaya I, Tereshchenko S, Alekseeva S, Mosendz I, Slukovskaya, M, Ivanova L, et al. Vermiculitelizardite ameliorants from mining waste. In: IOP Conference Series: Earth and Environmental Science. Volume 368. Moscow: IOP Publishing; 2019. p.012027. doi: 10.1088/1755-1315/368/1/012027
  17. Kremenetskaya I, Ivanova L, Chislov M, Zvereva I, Vasilieva T, Marchevskaya, et al. Physicochemical transformation of expanded vermiculite after long-term use in hydroponics. Applied Clay Science. 2020; 198:105839. doi: 10.1016/j.clay.2020.105839
  18. Mosendz IA, Kremenetskaya IP, Novikov AI, Tereshchenko SV. Treatment of technogenically polluted water bodies from copper and nickel by vermiculite-sungulite materials. Tsvetnye metally. 2021; (2):36—41. (In Russ.). doi: 10.17580/tsm.2021.02.05
  19. Kremenetskaya IP, Korytnaya OP, Vasilyeva TN, Bubnova TP. Peculiar features of preparation and application of fractionated magnesia-silicate reagent. Russian Journal of Applied Chemistry. 2012; 85(10):1553— 1561. doi: 10.1134/S1070427212100011
  20. Fedotova EV, Mosendz IA, Kremenetskaya IP, Drogobuzhskaya SV. Forms of copper and nickel deposition by sungulite and thermovermiculite. Transactions Kola science centre. 2017; (5-1): 212—218. (In Russ.).
  21. Slukovskaya MV, Kremenetskaya IP, Drogobuzhskaya SV, Ivanova LA, Mosendz IA, Novikov AI. Serpentine mining wastes-Materials for soil rehabilitation in Cu-Ni polluted wastelands. Soil Science. 2018; 183(4):141—149. doi: 10.1097/SS.0000000000000236
  22. Cao CY, Yu B, Wang M, Zhao YY, Wan X, Zhao S. Adsorption properties of Pb2+ on thermal-activated serpentine. Separation Science and Technology. 2019; 54(18):3037—3045. doi: 10.1080/01496395.2019.1565776
  23. Ivanova TK, Kremenetskaya IP, Gurevich BI. Production and technological characteristics of granulated magnesium-silicate reagent. Chemical Technology. 2018; 20(1):2—10. (In Russ.).
  24. Kremenetskaya IP, Ivanova TK, Gurevich BI, Novikov AI, Semushin VV. Separate deposition of metals from highly concentrated solutions with granulated magnesia-silicate reagent. Vestnik MSTU. 2021; 24(1):118—130. (In Russ.). doi: 10.21443/1560-9278-2021-24-1-118-130
  25. Ivanova TK, Kremenetskaya IP, Novikov AI, Semenov VG., Nikolaev AG, Slukovskaya MV. In Situ Control of Thermal Activation Conditions by Color for Serpentines with a High Iron Content. Materials. 2021; 14(21):6731. doi: 10.3390/ma14216731
  26. Kremenetskaya I, Alekseeva S, Slukovskaya M, Mosendz I, Drogobuzhskaya S, Ivanova L. Expanded vermiculite-reached product obtained from mining waste: the effect of roasting temperature on the agronomic properties. Physicochemical Problems of Mineral Processing. 2020; 56(1):103—112. doi: 10.5277/ppmp19086
  27. Ashirov A. Ionoobmennaya ochistka stochnykh vod, rastvorov i gazov [Ion-exchange treatment of wastewater, solutions and gases]. Leningrad: Khimiya publ.; 1983. (In Russ.).
  28. Ivanova TK, Kremenetskaya IP. Obtaining granulated serpentinite-magnesite with the use of batch mixer-granulator. In: Science and education in the Arctic region: conference proceedings. Murmansk; 2016. p.68—73. (In Russ.).
  29. Interstate Council for Standartization, Metrology and Sertification. GOST 19440-94. Metal powders. Determination of bulk density. Part 1. Method using a funnel. Part 2. Scott’s volumometer method. Мoscow; 1994. (In Russ.).
  30. Interstate Council for Standartization, Metrology and Sertification. GOST 32632-2014. Test methods for chemical products hazardous to the environment. Moscow: Standardinform; 2015. (In Russ.).
  31. Ladonin DV. Formy soedinenii tyazhelykh metallov v tekhnogenno-zagryaznennykh pochvakh [Forms of heavy metal compounds in technogenically polluted soils] [Dissertation]. Moscow; 2016. (In Russ.).
  32. Minkina TM, Mandzhieva SS, Burachevskaya MV, Bauer TV. Sushkova SN. Method of determining loosely bound compounds of heavy metals in the soil. 2018. MethodsX. 2018; 5:217—226. doi: 10.1016/j. mex.2018.02.007
  33. Siromlya TI. Mobile forms of compounds of chemical elements in soils. Sibirskij ekologicheskij zhurnal. 2009; 16(2):307—318. (In Russ.).
  34. Krasavtseva EA, Ivanova TK, Mosendz IA, Maksimova VV, Kanarekina IP, Panikorovsky TL, et al. Hydrophysical properties as a limiting factor of self-restoration of man-made landscapes. In: Problems of complex and environmentally safe processing of natural and man-made mineral raw materials: conference proceedings. Vladikavkaz: 2021; p.562—565. (In Russ.).
  35. Feng J, Liu M, Fu L, Ma S, Yang J, Mo W, et al. Study on the influence mechanism of Mg2+ modification on vermiculite thermal expansion based on molecular dynamics simulation. Ceramics International. 2020; 46(5):6413—6417. doi: 10.1016/j.ceramint.2019.11.119.
  36. Smagin AV. Teoriya i praktika konstruirovaniya pochv [Theory and practice of soil design]. Moscow; 2012. (In Russ.).
  37. Shein EV. Kurs fiziki pochv [Course of physics of soils]. Moscow; 2005. (In Russ.).

Supplementary files

Supplementary Files
Action
1. Fig. 1. Appearance of the research objects: а — general view; б — waste serpentine sorbent; в — expanded vermiculite (fr. 0.45…2.00 mm); г — podzol (fr. < 2.0 mm)

Download (822KB)
2. Fig. 2. Granulometric composition of podzol

Download (19KB)
3. Fig. 3. Fractional composition of micro- and macrocomponents in industrially polluted podzol

Download (17KB)
4. Fig. 4. Concentration of nutrient (a) and potentially toxic (б) elements in aqueous solutions of leaching of podzol and expanded vermiculite mixtures

Download (17KB)
5. Fig. 5. Concentrations of nutrient (a) and potentially toxic (б) elements in aqueous leaching solutions of podzol P and expanded vermiculite V mixtures and waste serpentine sorbent

Download (29KB)
6. Fig. 6. Water retention curves of podzol P, expanded vermiculite V and soil mixtures based on them with the addition of waste serpentine sorbent VSP ‑1 1:3(1:1), VSP‑2 1:3(1:2), VSP‑4 1:4(1:1) VSP‑9 1:5(1:4)

Download (39KB)
7. Fig. 7. Morphometric parameters of test crops 21 days after the start of the experiment: plant length (а, б) and biomass (в, г) of A. sativa (a, c) and T. pratense (б, г)

Download (38KB)

Copyright (c) 2021 Ivanova T.K., Slukovskaya M.V., Mosendz I.A., Krasavtseva E.A., Maksimova V.V., Kanareykina I.P., Shirokaya A.A., Kremenetskaya I.P.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies