Influence of water erosion on the structure and content of labile humic substances in the structural-aggregate fractions of leached chernozems of the Central Chernozem region

Cover Page

Cite item

Abstract

The structural-aggregate composition of leached chernozems (Voronic Chernozems Pachic according to WRB-2014), the distribution of organic compounds Corg and labile humic substances (LHS) in the structural-aggregate fractions of carbon in the conditions of a slope type of terrain during the development of erosion were studied. The work was carried out in the northern part of the Voronezh region on the catena, which included a section of the watershed, smoothly turning into a southwestern slope about 1500 m long and 5˚ steep. The soils of the following sections of the catena were studied: 1) the watershed part; 2) the upper part of the slope; 3) the middle part of the slope. It was shown that degradation of the structural-aggregate state occurs in eroded chernozems, accompanied by a deterioration in microstructurality, a decrease in the number of mesoaggregates and a structural coefficient, as well as a loss of a water-resistant structure. According to the results, LHS play a very important role in maintaining the water-stable structure of chernozems. The most significant contribution to the content of Corg contribute mesoaggregates 5-1 mm in size, which are actively lost during the development of erosion.

Full Text

Table 1. Chemical and physicochemical properties of leached chernozems in conditions of a slope type of terrain (mean value ± error of the arithmetic mean, for n = 5)

Depth, cm

Сorg

Humus

рНwat.

Exchangeable cations, cmol (eq)/kg soil

%

Н+

Са2+

Mg2+

Leached chernozems low-humus medium-thick medium-loamy

0—10

2.99±0.09

5.16±0.17

6.5±0.14

2.1±0.12

24.1±0.90

5.3±0.12

20—30

2.43±0.07

4.19±0.11

6.9±0.09

3.8±0.08

24.7±0.61

5.0±0.11

40—50

1.66±0.08

2.86±0.11

7.1±0.12

1.1±0.10

20.4±0.91

4.3±0.11

60—70

1.23±0.04

2.12±0.10

7.2±0.10

0.8±0.05

19.4±0.74

4.3±0.09

80—90

0.73±0.03

1.25±0.09

7.5±0.11

18.5±0.93

4.0±0.13

100—100

0.60±0.03

1.04±0.05

7.9±0.08

18.0±0.65

3.8±0.09

120—130

0.35±0.03

0.60±0.04

8.0±0.09

17.8±0.95

3.5±0.12

Leached chernozems low-humus medium loamy weakly washed away

0—10

2.60±0.08

4.49±0.15

6.5±0.11

2.3±0.10

23.7±1.10

5.1±0.11

20—30

1.74±0.07

3.00±0.13

6.8±0.10

1.3±0.09

21.3±0.10

4.5±0.08

40—50

0.96±0.06

1.66±0.08

7.1±0.09

1.0±0.10

19.1±0.99

4.0±0.09

60—70

0.77±0.06

1.32±0.07

7.4±0.07

18.6±0.52

3.9±0.08

80—90

0.58±0.04

1.00±0.03

7.9±0.10

18.0±0.84

3.8±0.09

100—100

0.43±0.03

0.74±0.02

8.0±0.05

17.6±0.63

3.7±0.06

120—130

0.30±0.02

0.51±0.03

8.1±0.06

17.3±0.89

3.6±0.08

Leached chernozems slightly humus medium loamy medium washed away

0—10

2.12±0.08

3.66±0.18

6.9±0.13

1.8±0.09

22.3±0.98

4.8±0.11

20—30

1.42±0.06

2.44±0.11

7.4±0.09

20.4±0.71

4.3±0.09

40—50

0.81±0.05

1.40±0.10

7.6±0.11

18.7±1.01

3.9±0.10

60—70

0.67±0.05

1.15±0.08

7.8±0.09

18.3±0.78

3.8±0.07

80—90

0.53±0.03

0.92±0.05

7.9±0.08

17.9±0.96

3.7±0.10

100—100

0.36±0.01

0.62±0.04

8.2±0.08

17.4±0.83

3.6±0.07

120—130

0.19±0.01

0.32±0.03

8.2±0.09

16.9±0.89

3.5±0.09

 

Table 2. Granulometric (above the line) and micro-aggregate (below the line) composition, factors of dispersion and structure of chernozems leached in conditions  of a slope type of terrain (n = 5)

 

Table 3. Structural and aggregate composition (dry sieving —  above the line, wet — b elow the line) leached chernozems in conditions of a slope type of terrain (n = 5)

 

Distribution of Corg and CLHS in the structural-aggregate fractions of chernozems leached  in the conditions of the slope type of terrain: 1 —  watershed; 2 —  the upper part of the slope; 3 —  the lower part of the slope

×

About the authors

Ivan I. Vasenev

Russian State Agrarian University - Moscow Timiryazev Agricultural Academy

Author for correspondence.
Email: vasenev@rgau-msha.ru
ORCID iD: 0000-0001-9127-9569

Doctor of Biological Sciences, Professor, Head of Department of Ecology

49 Timiryazevskaya st., Moscow, 127550, Russian Federation

Nadezhda S. Gorbunova

Voronezh State University

Email: vilian@list.ru
ORCID iD: 0000-0002-7986-8106

Candidate of Biological Sciences, Associate Professor, Department of Ecology and Land Resources

1 Universitetskaya sq., Voronezh, 394018, Russian Federation

Arkady I. Gromovik

Voronezh State University

Email: agrom.ps@mail.ru
ORCID iD: 0000-0002-2340-6404

Candidate of Biological Sciences, Associate Professor, Department of Ecology and Land Resources

1 Universitetskaya sq., Voronezh, 394018, Russian Federation

Tatyana A. Devyatova

Voronezh State University

Email: devyatova.eco@gmail.com
ORCID iD: 0000-0002-4756-9005

Doctor of Biological Sciences, Professor, Head. Department of Ecology and Land Resources

1 Universitetskaya sq., Voronezh, 394018, Russian Federation

References

  1. Gusarov AV, Golosov VN, Sharifullin AG, Gafurov AM. Contemporary trend in erosion of arable southern chernozems (haplic chernozems pachic) in the west of Orenburg region (Russia). Pochvovedenie. 2018; (5):601—616. (In Russ.). doi: 10.7868/S0032180X1805009X
  2. Plotnikova OO, Demidov VV, Lebedeva MP. The impact of shallow streams on the surface horizons of typical chernozem with different erosion degree. Dokuchaev Soil Bulletin. 2018; (91):85—109. (In Russ.). doi: 10.19047/0136-1694-2018-91-85-109.
  3. Soldat IE. Reducing the negative impact of soil erosion in the Belgorod region through adaptive landscape farming system. RUDN Journal of Agronomy and Animal Industries. 2020; 15(2):182—190. (In Russ.). doi: 10.22363/2312—797X-2020-15-2-182-190.
  4. Shpedt AA, Trubnikov YN, Zharinova NY. Agrogenic degradation of soils in Krasnoyarsk forest-steppe. Pochvovedenie. 2017; (10):1253—1261. (In Russ.). doi: 10.7868/S0032180X17100124
  5. Seidelman FR. Protection of soil from degradation. Vestnik Rossijskoj akademii nauk. 2008; 78(8):693—703. (In Russ.).
  6. Kogut BM. Estimate of chernozem erodibility level according to the humification degree. Dokuchaev Soil Bulletin. 2015; (78):59—69. (In Russ.).
  7. Molchanov EN, Savin IY, Yakovlev AS, Bulgakov DS, Makarov OA. National approaches to evaluation of the degree of soil degradation. Pochvovedenie. 2015; (11):1394—1406. (In Russ.). doi: 10.7868/S0032180X15110118
  8. Gosudarstvennyi (natsional’nyi) doklad o sostoyanii i ispol’zovanii zemel’ v Rossiiskoi federatsii v 2017 godu [State (national) report on the state and use of land in the Russian Federation in 2017]. Moscow; 2018. (In Russ.).
  9. Kuznetsov MS, Glazunov GP. Eroziya i okhrana pochv [Erosion and soil protection]. Moscow: MGU, KoloSS publ.; 2004. (In Russ.).
  10. Jastrow JD, Miller RM, Boutton TW. Carbon dynamics of aggregate-associated organic matter estimated by carbon-13 natural abundance. Soil Sci. Soc. Am. J. 1996; 60(3):801—807. doi: 10.2136/sssaj1996.03615995006000030017x
  11. Six J, Paustian K, Elliott ET, Combrink C. Soil structure and soil organic matter: I. Distribution of aggregate-size classes and aggregate-associated carbon. Soil Sci. Soc. Am. J. 2000; 64(2):681—689. doi: 10.2136/sssaj2000.642681x
  12. Semyonov VM, Ivannikova LA, Semyonova NA, Khodzhaeva AK, Udaltsov SN. Organic matter mineralization in different soil aggregate fractions. Pochvovedenie. 2010; (2):157—165. (In Russ.). doi: 10.1134/S1064229310020031
  13. Kogut BM, Sysuev SA, Kholodov VA. Water stability and labile humic substances of typical chernozems under different land uses. Pochvovedenie. 2012; (5):555—561. (In Russ.).
  14. Semyonov VM, Kogut BM. Pochvennoe organicheskoe veshchestvo [Soil organic matter]. Moscow: GEOS publ.; 2015. (In Russ.).
  15. John B, Yamashita T, Ludwig B, Flessa H. Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use. Geoderma. 2005; 128(1—2):63—79. doi: 10.1016/j.geoderma.2004.12.013
  16. Oades JM, Waters AG. Aggregate hierarchy in soils. Australian J. Soil Res. 1991; 29(6):815—828. doi: 10.1071/SR9910815
  17. Milanovskii EY. Gumusovye veshchestva pochv kak prirodnye gidrofobno-gidrofil’nye soedineniya [Humic substances of soils as natural hydrophobic-hydrophilic compounds]. Moscow: GEOS publ.; 2009. (In Russ.).
  18. Milanovskii EY, Shein EV. Functional role of amphiphilic humus components in humus structure formation and soil genesis. Pochvovedenie. 2002; (10):1201—1213. (In Russ.).
  19. Shein EV, Milanovskii EY. The role of organic matter in the formation and stability of soil aggregates. Pochvovedenie. 2003; (1):53—61. (In Russ.).
  20. Jastrow JD. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biol. and Biochem. 1996; 28(4—5):665—676. doi: 10.1016/0038-0717(95)00159-X
  21. Klassifikatsiya i diagnostika pochv SSSR [Classification and diagnostics of soils in the USSR]. Moscow: Koloss publ.; 1977. (In Russ.).
  22. FAO. World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports. Report number: 106. 2015
  23. Shcheglov DI, Gromovik AI, Gorbunova NS. Osnovy khimicheskogo analiza pochv [Fundamentals of soil chemical analysis]. Voronezh: VGU publ.; 2019. (In Russ.).
  24. Shein EV, Karpachevsky LO. Teoriya I metody fiziki pochv [Theory and methods of soil physics]. Moscow: GrifiK publ.; 2007. (In Russ.).

Supplementary files

Supplementary Files
Action
1. Distribution of Corg and CLHS in the structural-aggregate fractions of chernozems leached in the conditions of the slope type of terrain

Download (47KB)

Copyright (c) 2022 Vasenev I.I., Gorbunova N.S., Gromovik A.I., Devyatova T.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies