Application of GIS technologies in surveying the state of forest crops in the green zone of Astana

Cover Page

Cite item

Abstract

When carrying out forestry, constant monitoring of plant condition and growth is very important. There is a wide range of Earth remote sensing sources for effective management of woody vegetation in vast areas. The purpose of the study was to identify areas with weekened and dying tree crops in the green observation zone of Astana, Kazakhstan, covering ‘Batys’ forestry using remote sensing data. The results of studies carried out for research on the growth and development of artificial plantations were obtained. During the experiment, a comparison of remote sensing data was performed using an unmanned aerial vehicle Supercam S350F with multispectral camera Micasense RedEdge and high-resolution measurements obtained with Sentinel‑2 and PlanetScope satellites in order to select a method for solving the tasks. Based on the materials of multispectral diagnostics, the state of forest plantations in ‘Batys’ forestry was revealed, where 35 % of tree crops were classified as healthy, 30 % — as weakened, and 35 % — as dying.

Full Text

Table 1. Assessment of the state of tree crops in ‘Batys’ forestry (planting year — 2010)

Species

Quarter,

No.

Total

Healthy plants

Weakened plants

Strongly weakened plants

Dead plants

Survival, %

Plant state assessment, %

State category

Betula pendula

67

136

102

10

4

20

83.8

81.9

Healthy

Betula pendula

67

115

45

30

33

7

79.6

69,1

Weakened

Betula pendula

74

124

25

10

45

44

46.4

41,7

Dying

Acer negundo

62

135

121

9

0

5

96.3

94.4

Healthy

Acer negundo

66

122

44

47

23

9

45.5

70,8

Weakened

Ulmus pumila

63

115

85

15

6

9

89.6

85.4

Healthy

Ulmus pumila

66

109

40

25

11

33

64.7

58,0

Weakened

Ulmus pumila

62

101

23

12

38

28

53.5

47,2

Dying

 

Table 2. Taxation indicators of forest crops

Species

Quarter no.

Average height, m

Average diameter, cm

Condition

X±m

V, %

X±m

V, %

Betula pendula

67

7.8±0.4

23.9

7.3±0.4

24.6

Healthy

Betula pendula

67

5.5±0.3

23.6

6.5±0.5

33.9

Weakened

Betula pendula

74

5.9±0.4

41.7

4.4±0.2

39.2

Dying

Acer negundo

62

3.6±0.10

14.5

3.8±0.2

28.3

Healthy

Acer negundo

66

2.8±0.16

26.6

3.3±0.3

37.0

Weakened

Ulmus pumila

62

5.6±0.25

17.2

8.1±0.5

22.7

Healthy

Ulmus pumila

63

5.0±0.34

16.7

7.5±0.6

19.1

Weakened

Ulmus pumila

66

4.9±0.21

17.0

6.3±0.3

18.8

Dying

 

Fig. 1. Vegetation indices NDVI of ‘Batys’ forestry, UAV data

 

Fig. 2. Comparison of pixel values by terrestrial forest state classes

×

About the authors

Andrey N. Kabanov

A.N. Bukeikhan Kazakh Research Institute of Forestry and Agroforestry

Author for correspondence.
Email: 7058613132@mail.ru
ORCID iD: 0000-0002-5479-3689
SPIN-code: 9628-4453

PhD student, senior researcher

58 Kirova st., Shchuchinsk, 021704, Kazakhstan

Askhat S. Ospangaliev

S. Seifullin Kazakh AgroTechnical Research University

Email: a.ospangaliev@mail.ru
ORCID iD: 0000-0001-7478-8505

Senior lecturer

62B Zhenis st., Astana, 010000, Kazakhstan

Svetlana A. Kabanova

A.N. Bukeikhan Kazakh Research Institute of Forestry and Agroforestry

Email: kabanova.05@mail.ru
ORCID iD: 0000-0002-3117-7381
SPIN-code: 3897-4757

Candidate of Biological Sciences, Associate Professor, Head of the Department of Reforestation and Forest Cultivation

58 Kirova st., Shchuchinsk, 021704, Kazakhstan

Igor S. Kochegarov

A.N. Bukeikhan Kazakh Research Institute of Forestry and Agroforestry

Email: garik_0188@mail.ru
ORCID iD: 0000-0003-1185-5218
SPIN-code: 8313-4687

Junior researcher

58 Kirova st., Shchuchinsk, 021704, Kazakhstan

Aigul M. Bekbaeva

S. Seifullin Kazakh AgroTechnical Research University

Email: bekbaevaaigul@gmail.com
ORCID iD: 0000-0002-3477-1888

Deputy Director, Center for technological competence in the field of digitalization of the agro-industrial complex

62B Zhenis st., Astana, 010000, Kazakhstan

Matvey A. Danchenko

Tomsk State University

Email: mtd2005@sibmail.com
ORCID iD: 0000-0002-5974-9556
SPIN-code: 8209-8687

Candidate of Geographical Sciences, Associate Professor, Biological Institute

36 Lenin st., Tomsk, 634050, Russian Federation

References

  1. Gower ST. Patterns and Mechanisms of the Forest Carbon Cycle. Annual Review of Environment and Resources. 2003;28:169–204. doi: 10.1146/annurev.energy.28.050302.105515
  2. Suyundikov ZO. Technology of creation and maintenance of forest plantations of Astana green zone. In: Tekhnologii sozdaniya zashchitnykh nasazhdenii v prigorodnoi zone g. Astany [Technologies of creation of protective plantings in the the suburban area of Astana]. Astana; 2012. p.3–5. (In Russ.).
  3. Mykytanov ZK, Rakhmov GA, Baitanaev OA, Vysotsky AN. The creation of a green zone in Astana — a breakthrough project of artificial afforestation in Kazakhstan. Experimental biology. 2011;(4):15–20. (In Russ.).
  4. Alekseev VA. Diagnostics of the vital state of trees and stands. Russian Journal of Forest Science. 1989;(4):51–57. (In Russ.).
  5. Ogievskiy VV, Hirov AA. Obsledovanie i issledovanie lesnykh kul’tur [Survey and research of forest crops]. Moscow: Lesnaya promyshlennost’ publ.; 1964. (In Russ.).
  6. Mancino G, Ferrara A, Padula A, Nole A. Cross-­Comparison between Landsat 8 (OLI) and Landsat 7 (ETM+) Derived Vegetation Indices in a Mediterranean Environment. Remote Sensing. 2020;12(2):291. doi: 10.3390/rs12020291
  7. Broge NH, Leblanc E. Comparing prediction power and stability of broadbandand hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment. 2001;76(2):156–172. doi: 10.1016/S0034-4257(00)00197-8
  8. Ahammad T. Effect of chlorophyll content & solar irradiance on spectral reflectance of vegetation canopies acquired by spectro-­radiometer. International Journal of Environment and Geoinformatics. 2021;9(1):170–178. doi: 10.30897/ijegeo.958100
  9. Gitelson AA, Gritz Y, Merzlyak MN. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology. 2021;160(3):271–282. doi: 10.1078/0176-1617-00887
  10. Ovchinnikov AV. Technique for experimental study of spectral brightness coefficients materials and natural backgrounds. Journal of Radio Electronics. 2021;(6):14. doi: 10.30898/1684-1719.2021.6.5. (In Russ.).
  11. Breiman L. Random Forests. Machine Learning. 2001;45:5–32. doi: 10.1023/A:1010933404324
  12. Hastie T, Tibshirani R, Friedman JC. Random Forests. In: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd ed. Springer-­Verlag; 2009. p.764.
  13. Meng J, Li S, Wang W, Liu Q, Xie S, Ma W. Mapping forest health using spectral and textural information extracted from SPOT-5 satellite images. Remote Sensing. 2016;8(9):719. doi: 10.3390/rs8090719
  14. Immitzer M, Atzberger C, Koukal T. Tree species classification with random forest using very high spatial resolution 8-band WorldView-2 satellite data. Remote sensing. 2012;4(9):2661–2693. doi: 10.3390/rs4092661
  15. Plakman V, Janssen T, Brouwer N, Veraverbeke S. Mapping species at an individual-tree scale in a temperate forest, using Sentinel-2 images, airborne laser scanning data, and random forest classification. Remote Sensing, 2020;12(22):3710. doi: 10.3390/rs12223710

Supplementary files

Supplementary Files
Action
1. Fig. 1. Vegetation indices NDVI of ‘Batys’ forestry, UAV data

Download (494KB)
2. Fig. 2. Comparison of pixel values by terrestrial forest state classes

Download (10KB)

Copyright (c) 2023 Kabanov A.N., Ospangaliev A.S., Kabanova S.A., Kochegarov I.S., Bekbaeva A.M., Danchenko M.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies