Influence of manure application method on gray forest soil fertility, crop yield and quality

Cover Page

Cite item

Abstract

The article presents the results of field experiments on deepening the arable horizon of gray forest medium loamy soil to increase its fertility through applying organic fertilizer under PY-3-35 layer plow to a depth of 25…27 cm. Low mineralization of organic fertilizer during layer cultivation under oxygen deficiency conditions contributed to accumulation of humus in soil by 6.6 t/ha more than during conventional plowing, and by 7.5 t/ha - than during disking. It also improved water-physical and biological properties of soil: number of water-resistant aggregates increased by 4.6 and 5.3 %, soil density lowered by 0.03 and 0.04 g/cm3, number of earthworms increased by 3...6 individuals, expanded reproduction of fertility was provided, productivity of arable land increased by 7.0 and 6.7 % and crop quality increased compared to conventional plowing and disking, respectively. Deep manure incorporation extended life of organic fertilizer up to 5 years, while after conventional plowing and disking this process lasted only 2...3 years. It is not economically and environmentally beneficial, since frequent application requires a lot of fuel, and a large amount of harmful chemical compounds contained in combustion products is dumped into the environment.

Full Text

Table 1. The balance of nutrients in crop rotation (2008—2016)

Fertility element

Units

Manure incorporation method

PN-4-35, 20-22 cm

PYA-3-35, 25-27 cm

BDT-3, 15-18 cm

Nutrient intake from manure, crop-root residues and NPK

Humus output

t/ha

13.6

13.7

13.7

Nitrogen

kg/ha

1069

1127

1090

Phosphorus

kg/ha

750

782

781

Potassium

kg/ha

1115

1111

1110

Calcium

kg/ha

505

542

504

Magnesium

kg/ha

243

246

242

Crop nutrient removal

Humus output

t/ha

9.58

9.61

9.61

Nitrogen

kg/ha

1012

1068

1002

Phosphorus

kg/ha

715

754

716

Potassium

kg/ha

946

996

947

Calcium

kg/ha

495

532

495

Magnesium

kg/ha

305

323

300

Soil nutrient balance

Humus output

t/ha

4.02

4.09

4.09

Nitrogen

kg/ha

57.0

59

88

Phosphorus

kg/ha

35.0

28

65.0

Potassium

kg/ha

169

115

16.

Calcium

kg/ha

10.0

10.0

9.0

Magnesium

kg/ha

–62.0

–77.0

–58.0

 

Table 2. Changes in soil fertility depending on manure application method

No.
 p / p

Soil parameter

Year

PN­4­33
(20­-22 cm)

PY­3­35
(25-­27 cm)

BDT­3
(15-18 cm)

1

Exchange acidity

(рНКСl)

2007

6.08

6.05

6,08

2008

6.10

6.08

6,10

2016

6.15

6.18

6,11

2

N­NO3, mg/kg

2007

17.3

17.4

17,1

2008

17.9

18.1

18,0

2016

21.7

23.6

21,9

3

P2O5, mg/kg

2007

160

161

166

2008

172

168

174

2016

180

210

189

4

K2O, mg/kg

2007

161

160

158

2008

172

183

176

2016

186

208

184

5

Total absorbed bases, mEq/100 g

2007

18.3

18.7

18,8

2008

20.6

22.0

20,2

2016

23.0

25.3

21,8

6

Humus, %

2007

2.81

2.83

2,80

2008

2.84

2.87

2,85

2016

3.01

3.20

2,99

Humus growth, %, (t / ha)

0,2 (7,8)

0.37 (14.4)

0.19 (6.9)

Note. 2007 — leveling crops of oats (source data).

 

Table 3. Grain yield and quality depending on manure application method (2008—2016)

Variant

Yield,

 t/ha

Crude

 protein, %

Gluten,%

Starch, %

Total  nitrogen, %

К20, %

Р2О5, %

 

 

Winter wheat after full fallow

 

 

1

4.35

12.2

28.2

56.2

2.45

0.52

0.54

2

4.56

13.6

31.2

59.0

2.58

0.53

0.59

3

4.36

12.3

29.4

56.3

2.41

0.52

0.54

LSD05

0.16

 

 

 

 

 

 

 

 

Winter wheat after perennial grasses

 

 

1

4.43

14.9

36.4

54.8

2.28

0.46

0.57

2

4.59

15.4

37.6

56.3

2.31

0.50

0.60

3

4.41

14.9

36.2

54.3

2.18

0.47

0.57

LSD05

0.14

 

 

 

 

 

 

 

 

Spring wheat

 

 

1

3.23

14.9

36.4

54.8

2.28

0.46

0.57

2

3.58

15.4

37.6

56.3

2.31

0.50

0.60

3

3.15

14.9

36.2

54.3

2.18

0.47

0.57

LSD05

0.13

 

 

 

 

 

 

 

 

Spring barley

 

 

1

3.42

13.4

3.68*

60.0

2.15

0.78

0.92

2

3.67

14.2

3.64 *

63.0

2.23

0.95

0.94

3

3.10

13.3

3.67 *

59.0

2.09

0.77

0.90

LSD05

0.15

 

 

 

 

 

 

 

 

Oats

 

 

1

3.85

12.8

28.2

40.1

2.37

0.67

0.55

2

4.65

14.3

30.9

43.9

2.44

0.74

0.59

3

4.46

13.2

29.8

42.6

2.43

0.68

0.57

LSD05

0.14

 

 

 

 

 

 

Note. 1— PN-4-35 at 20…22 cm, 100 t/ha; 2 — PY-3-35 at 25…27 cm; 3 — BDT-3 at 15…18 cm; * — fiber content.

×

About the authors

Ivan Grigoryevich Meltsaev

Ivanovo Research Institute of Agriculture - branch of Upper Volga Federal Agrarian Research Center

Author for correspondence.
Email: ivniicx@mail.ru

Doctor of Agricultural Sciences, Professor, leading researcher, Department of feed production and Agrochemistry

2 Tsentralnaya st., Bogorodskoe village, Ivanovo district, Ivanovo region, 153506, Rusian Federation

Sabir Tyumenbegovich Esedullaev

Ivanovo Research Institute of Agriculture - branch of Upper Volga Federal Agrarian Research Center

Email: ivniicx@mail.ru

Candidate of Agricultural Sciences, Associate Professor, Director

2 Tsentralnaya st., Bogorodskoe village, Ivanovo district, Ivanovo region, 153506, Rusian Federation

References

  1. Verkhovets IA, Malygina NS, Tikhoikina IM, Tuchkova LE, Chuvasheva ES. Influence of gray forest soil fertility on wheat grain yield and quality. Vestnik sel’skogo razvitiya i sotsial’noi politiki [Bulletin of Rural Development and Social Policy]. 2015; 4:22—26. (In Russ).
  2. Zinyakova NB, Semenov VM. Influence of different fertilizer systems on the content and quality of organic matter in gray forest soil. In: Sistemy ispol’zovaniya organicheskikh udobrenii i vozobnovlyaemykh resursov v landshaftnom zemledelii. T. 1 [Systems for the use of organic fertilizers and renewable resources in landscape agriculture. Vol. 1]. 2013. p. 93—102. (In Russ).
  3. Okorkov VV, Fenova OA, Okorkova LA. Influence of fertilizers on the content of mobile forms of nitrogen and oat yield on gray forest soils of the Upper Volga region. Agrohimia. 2020; (2):3—13. (In Russ). doi: 10.31857/S0002188120020118
  4. Okorokov VV, Fenova OA, Okorkova LA. Fertilizers and their impact on productivity and fertility of gray forest soils of the upper Volga region. Vladimir agricolist. 2019; (2):4—11. (In Russ). doi: 10.24411/22252584-2019-10057
  5. Platonycheva YN, Polyakova NV, Volodina EN. Importance of fertilizers in increasing yield of grain crops and optimizing fertility of gray forest soils. Agrochemical Herald. 2009; (2):24—26. (In Russ).
  6. Khabirov IK, Khaziev FK, Bagautdinov FY, Ramazanov RY, Gabbasova IM, Agafarova YM. The effect of organic fertilizers on fertility of gray forest soils in Bashkiria. Eurasian Soil Science. 1995; (4):465—471. (In Russ).
  7. Kotova EO. Prospects of application of sideral agricultural crops as organic fertilizers on gray forest soils of the Central Chernozem zone. In: Noveishie napravleniya razvitiya agrarnoi nauki v rabotakh molodykh uchenykh [The latest trends in the development of agricultural science in the works of young scientists]. Novosobirsk: Zolotoi kolos publ.; 2019. p. 150—154. (In Russ).
  8. Korchagin AA, Okorkov VV, Okorkova LA, Ragimov AO. Influence of fertilizer systems on humus content and quality in gray forest soils of the Vladimir Opolye. Vladimir agricolist. 2013; (1):6—10. (In Russ).
  9. Gordon BW, Murphy L, Wiatrak P. Improving phosphorus nutrition of corn. American Journal of Agricultural and Biological Sciences. 2014; 9(3):294—298. doi: 10.3844/ajabssp.2014.294.298
  10. Shahbazi S, Bagheri H, Farboudi M, Shahrokhi S. The effect of sowing dates and different levels of nitrogen on yield and yield components of second crop corn var. 704-KSC in Miyaneh County. Advances in Bioresearch. 2016; 7(3):119—125. doi: 10.15515/abr.0976-4585.7.3.119125.
  11. Bausov AM, Borin AA, Nenaidenko GN. Ratsional’noe primenenie udobrenii v usloviyakh rynochnoi ekonomiki [Rational use of fertilizers in a market economy]. Ivanovo; 2007. (In Russ).
  12. Nenaidenko GN, Mazirov MA. Plodorodie i effektivnoe primenenie udobrenii v agrotsenozakh Verkhnevolzh’ya [Fertility and effective application of fertilizers in agrocenoses of the Upper Volga region]. Vladimir; 2002. (In Russ).
  13. Kudeyarov VN. Assessment of nutritional degradation of arable soils in Russia. Herald of the Russian Academy of Sciences. 2015; 85(9):771—775. (In Russ). doi: 10.7868/S0869587315090078
  14. Temnikov VN. Agrochemical ways of increasing the fertility of sod-podzolic soils in the Central region of the NZ of Russia. In: Agrokhimicheskie tekhnologii, priemy i sposoby uvelicheniya ob"emov proizvodstva vysokokachestvennoi s/kh produktsii [Agrochemical technologies, techniques and methods of increasing the volume of production of high-quality agricultural products]. Moscow; 2008. (In Russ).
  15. Zavalin AA, Blagoveshchenskaya GG. Contribution of leguminous biological nitrogen to the nitrogen budget of Russian agriculture. Eurasian Soil Science. 2012; (6):32—37. (In Russ).
  16. Meltsaev IG, Zinchenko SI, Esedullaev ST, Loshchinina AE. Sevooborot i sistema obrabotki — osnovy povysheniya plodorodiya pochv i urozhainosti v Verkhnevolzh’e [Crop rotation and processing system-the basis for increasing soil fertility and yield in the Upper Volga region]. Ivanovo: PresSto publ.; 2019. (In Russ).
  17. Sdobnikov SS. Pakhat’ ili ne pakhat’ [Plow or not plow]. Moscow: Bruks publ.; 1994. (In Russ).
  18. Zhukov AI, Popov PD. Regulirovanie balansa gumusa v pochve [Regulation of humus balance in soil]. Moscow: Rosagropromizdat publ.; 1988. (In Russ).
  19. Kostychev PA. Pochvovedenie [Soil Science]. Moscow: Selkhozizdat publ.; 1940. (In Russ).

Copyright (c) 2021 Meltsaev I.G., Esedullaev S.T.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies