The role of nanotechnology for improving crop production

Cover Page

Cite item

Abstract

Today, green nanotechnology has great importance due to the presence of different modes of restrictive action against various pathogens such as fungi and bacterial species. The use of nanomaterials has recently increased in agriculture and plant-tissue culture thanks to their unique different properties such as; magnetic, electrical, mechanical, optical, and chemical properties. Optimum use of iron increases protein content in the wheat grain. They also enhance plant growth by improving disease resistance and increase stability of the plants by anti-bending and deeper rooting of crops. It has been reported by many researchers that Nano-fertilizers significantly influenced the seed germination which demonstrated the effect of Nano fertilizers on seed and seed vigor. Chemical methods have been used for the synthesis of nanoparticles. Developing Nano-biotechnology is generating interests in research towards eco-friendly, cost effective and biological synthesis of nanoparticles. Nanoparticles systems have been combined into plant fungal disease controlpractices. Using nanoparticles as biosensors in plant disease diagnostics is also illustrated.

About the authors

Amir Lakzian

Ferdowsi University

Email: maryambayat1313@yahoo.com
Professor, Department of Soil Science, Faculty of Agriculture Mashhad, Iran

Maryam Bayat

Peoples’ Friendship University of Russia (RUDN University)

Email: maryambayat1313@yahoo.com
Agrobiotechnological Department, Agrarian and Technological Institute Moscow, Russian Federation

Anvar Gadzhikurbanov

Peoples’ Friendship University of Russia (RUDN University)

Email: gadcgikurbanow@mail.ru
Agroengineering Department, Agrarian and Technological Institute Moscow, Russian Federation

Meisam Zargar

Peoples’ Friendship University of Russia (RUDN University)

Email: zargar-m@rudn.ru
Associate Professor, Postdoctoral Research Associate, Agrobiotechnological Department, Agrarian and Technological Institute Moscow, Russian Federation

References

  1. Zhang C, Wenhui L, Zhu B, Chen H, Chi H, Li L, Qin Y, Xue J. The quality evaluation of postharvest strawberries stored in nano-Ag packages at refrigeration temperature. Polymers. 2018; 10(8):894. doi: 10.3390/polym10080894
  2. Liu L, Ji ML, Chen M, Sun M, Fu XL, Li L, Gao DS, Zhu CY. The flavor and nutritional characteristic of four strawberry varieties cultured in soilless system. Food SciNutr. 2016; 4(6):858-868. doi: 10.1002/fsn3.346
  3. Ruiz-Romeroa P, Salasb BV, Mendoza D, Trujillo VM. Antifungal effects of silver phytonanoparticles from Yucca shilerifera against strawberry soil-borne pathogens: Fusarium solani and Macrophomina phaseolina. Mycobiology. 2018; 46(1):47-51. doi: 10.1080/12298093.2018.1454011
  4. Pastrana AM, Capote N, De los Santos B, Romero R, Basallote-Ureba MJ. First report of Fusarium solani causing crown and root rot on strawberry crops in southwestern Spain. Plant Dis. 2014; 98(1):161. doi: 10.1094/PDIS-07-13-0682-PDN
  5. Sharifi K, Mahdavi M. First report of strawberry crown and root rot caused by Macrophominaphaseolina in Iran. Iran J Plant Pathol. 2011; 47(4):Pe479-Pe480.
  6. Adesina MF, Lembke A, Costa R, Speksnijder A, Smalla, K. Screening of bacterial isolates from various European soils for in vitro antagonistic activity towards Rhizoctonia solani and Fusarium oxysporum: site dependent composition and diversity revealed. Soil Biol Biochem. 2007; 39(11):2818-2828. doi: 10.1016/j.soilbio.2007.06.004
  7. Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS. Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology. 2011; 39(3):194-199. doi: 10.5941/MYCO.2011.39.3.194
  8. Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Shao W, He N, Hong J, Chen C. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology. 2007; 18(10):105104.
  9. Kouvaris P, Delimitis A, Zaspalis V, Papadopoulos D, Tsipas SA, Michailidis N. Green synthesis and characterization of silver nanoparticles produced using Arbutus Unedo leaf extract. Materials Letters. 2012; 76:18-20. doi: 10.1016/j.matlet.2012.02.025
  10. Park HH, Choi YJ. Direct patterning of SnO(2) composite films prepared with various contents of Pt nanoparticles by photochemical metal-organic deposition. Thin Solid Films. 2011; 519(19): 6214-6218. doi: 10.1016/j.tsf.2011.03.051
  11. Hubenthal F. Noble metal nanoparticles: synthesis and optical properties. In: Andrews DL, Scholes GD, Wiederrecht GP (eds.) Comprehensive Nanoscience and Technology. Vol. 1: Nanomaterials. New York: Elsevier Science; 2011; p. 375-435.
  12. Ghodake GS, Deshpande NG, Lee YP, Jin ES. Pear fruit extract-assisted room temperature biosynthesis of gold nanoplates. Colloids and Surface B: Biointerfaces. 2010; 75(2):584-589. doi: 10.1016/j.colsurfb.2009.09.040
  13. Sanghi R, Verma P. Biomimetic synthesis and characterization of protein capped silver nanoparticles. Bioresour Technol. 2009; 100(1):501-504. doi: 10.1016/j.biortech.2008.05.048
  14. Shankar SS, Rai A, Ahmad A, Sastry M. Rapid synthesis of Au, Ag and bimetallic Au core-Ag shell nanoparticles using neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science. 2004; 275(2):496-502. doi: 10.1016/j.jcis.2004.03.003
  15. Prasad R, Bhattacharyya A, Nguyen QD. Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Front Microbiol. 2017; 8:1014. doi: 10.3389/fmicb.2017.01014
  16. Vijayaraghava K, Nalini K. Biotemplates in the green synthesis of silver nanoparticles. Biotechnology journal. 2010; 5(10):1098-1110. doi: 10.1002/biot.201000167
  17. Huang L, Dian-Qing L, Yan-Jun W, Min DG, Xue ED. Controllable preparation of nano-MgO and investigation of its bactericidal properties. J Inorg Biochem. 2011; 99(5):986-993. doi: 10.1016/j.jinorgbio.2004.12.022
  18. Solanki JN, Murthy ZVP. Highly monodisperse and sub-nano silver particles synthesis via micro emulsion technique. Colloids Surface. 2010; 359(1-3):31-38. doi: 10.1016/j.colsurfa.2010.01.058
  19. Sastry RK, Rashmi HB, Rao NH. Nanotechnology Patents as R&D Indicators for Disease Management Strategies in Agriculture. J Intellect Prop Rights. 2010; 15(3):197-205.
  20. Delfani M, Firouzabadi MB, Farrokhi N, Makarian H. Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Commun Soil Sci Plant Anal. 2014; 45(4):530-540. doi: 10.1080/00103624.2013.863911
  21. Narro-Sanchez J, Davalos-Gonzalez PA, Velasquez-Valle R, Castro-Franco J. Main strawberry diseases in Irapuato, Guanajuato, and Zamora, Michoacan, Mexico. Acta Hortic. 2006; 708:167-172. doi: 10.17660/ActaHortic.2006.708.27
  22. Vitor G, Palma TC, Vieira B, Lourenço JP, Barros RJ, Costa MC. Start-up, adjustment and long-term performance of a two-stage bioremediation process, treating real acid mine drainage, coupled with biosynthesis of ZnS nanoparticles and ZnS/TiO2 nanocomposites. Miner Eng. 2015; 75:85-93. doi: 10.1016/j.mineng.2014.12.003
  23. Raposo R, Gomez V, Urrutia T, Melgarejo P. Fitness of Botrytis cinerea associated with dicarboximide resistance. Phytopathology. 2000; 90(11):1246-1249. doi: 10.1094/PHYTO.2000.90.11.1246
  24. Bartlett DW, Clough JM, Godwin JR, Hall AA, Hamer M, Parr-Dobrzanski B. The strobilurin fungicides. Pest Manag Sci. 2002; 58(7):649-622. doi: 10.1002/ps.520
  25. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY. Antimicrobial effects of silver nanoparticles. Nanomedicine. 2007; 3(1):95-101. doi: 10.1016/j.nano.2006.12.001
  26. Rejinold NS, Muthunarayanan M, Muthuchelian K, Chennazhi KP, Nair SV, Jayakumar R. Saponin-loaded chitosan nanoparticles and their cytotoxicity to cancer cell lines in vitro. Carbohydr Polym. 2011; 84(1):407-416. doi: 10.1016/j.carbpol.2010.11.056
  27. Piacente S, Pizza C, Oleszek W. Saponins and phenolics of Yucca schidigera Roezl: chemistry and bioactivity. Phytochem Rev. 2011; 4(2-3):177-190. doi: 10.1007/s11101-005-1234-5
  28. Quiroz KA, Berríos M, Carrasco B, Retamales JB, Caligari PD, García-Gonzáles R. Meristem culture and subsequent micropropagation of Chilean strawberry (Fragaria chiloensis (L.) Duch.). Biol Res. 2017; 50(1):20-35. doi: 10.1186/s40659-017-0125-8
  29. Mozafari A, Havas F, Ghaderi N. Application of iron nanoparticles and salicylic acid in in vitro culture of strawberries (Fragaria × ananassa Duch.) to cope with drought stress. Plant Cell Tissue Org Cult. 2017; 132(3):511-523. doi: 10.1007/s11240-017-1347-8
  30. Villamizar-Gallardo R, Cruz OJF, Ortiz-Rodriguez OR. Fungicidal effect of silver nanoparticles on toxigenic fungi in cocoa. Pesq Agropec Bras. 2016; 51(12):1929-1936. doi: 10.1590/S0100-204X2016001200003
  31. Yaghubi K, Ghaderi N, Vafaee Y, Javadi T. Potassium silicate alleviates deleterious effects of salinity on two strawberry cultivars grown under soilless pot culture. Sci Hortic. 2016; 213:87-95. doi: 10.1016/j.scienta.2016.10.012
  32. Mahdizadeh V, Safaie N, Khelghatibana F. Evaluation of antifungal activity of silver nanoparticles against some phytopathogenic fungi and Trichoderma harzianum. J Crop Prot. 2015; 4(3):291-300.
  33. Mickelbart MV, Hasegawa PM, Bailey-Serres J. Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet. 2015; 16:237-251. doi: 10.1038/nrg3901

Copyright (c) 2019 Lakzian A., Bayat M., Gadzhikurbanov A., Zargar M.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies