Molecular identification of Ditylenchus destructor nematode with PCR Species-Specific primers in the Moscow region

Cover Page

Cite item

Abstract

Potato ( Solanum tuberosum L.) is one of the most vital food and industrial crop and Ditylenchus destructor is an influential pathogenic potato nematode and is quarantine pest in many states and territories. As a result, the polymerase chain reaction (PCR) protocol was optimized to identify Ditylenchus destructor reliably and rapidly. The species-specific internal transcribed spacer (ITS) was used as the primer of the D. destructor ribosomal DNA gene. Some populations of this species from the Moscow region in the Russian Federation were investigated through species-specific primer PCR. New sequence from ITS-rRNA was deposited in the GenBank under accession number MN122076. The current molecular technique is more appropriate to distinguishing of nematode species, since it is practical, fast and precise.

About the authors

Niloufar Mahmoudi

Peoples’ Friendship University of Russia (RUDN University); Russian Plant Quarantine Center (VNIIKR)

Author for correspondence.
Email: niloofarmahmoodi@ymail.com

PhD candidate, Department of Agro-Biotechnology, Agrarian and Technological Institute

Moscow, Russian Federation

Yousef Naserzadeh

Peoples’ Friendship University of Russia (RUDN University); Russian Plant Quarantine Center (VNIIKR)

Email: unaserzadeh@gmail.com

PhD candidate, Department of Agro-Biotechnology, Agrarian and Technological Institute

Moscow, Russian Federation

Elena N Pakina

Peoples’ Friendship University of Russia (RUDN University)

Email: e-pakina@yandex.ru

PhD, Associate Professor, Department of Agro-Biotechnology, Agrarian and Technological Institute

Moscow, Russian Federation

Liudmila A Limantceva

Russian Plant Quarantine Center (VNIIKR)

Email: Limantseva.ludmila@vniikr.ru

PhD, Senior scientist, Plant Quarantine Center

Moscow region, Russian Federation

Davoud Kartuli Nejad

Semnan University

Email: Kartooli58@gmail.com

Assistant Professor of Forestry, Faculty of Desert Studies

Semnan, Iran

References

  1. López M, Riegel R, Lizana C, Behn A. Identification of virus and nematode resistance genes in the Chilota Potato Genebank of the Universidad Austral de Chile. Chilean journal of agricultural research. 2015; 75(3):320-327. doi: 10.4067/S0718-58392015000400008
  2. Scurrah MI, Niere B, Bridge J. Nematode parasites of solanum and sweet potatoes. In: Luc M, Sikora RA, Bridge J. (eds.) Plant parasitic nematodes in subtropical and tropical agriculture. 2nd ed. Wallingford, UK: CABI Publishing; 2005. p. 193-219. doi: 10.1079/9780851997278.0193
  3. Hijmans RJ. The effect of climate change on global potato production. American journal of potato research. 2003; 80(4):271-279. doi: 10.1007/BF02855363
  4. Nicol JM, Turner SJ, Coyne DL, Den Nijs L, Hockland S, Maafi ZT. Current nematode threats to world agriculture. In: Jones J, Gheysen G, Fenoll C. (eds.) Genomics and molecular genetics of plant-nematode interactions. Dordrecht: Springer; 2011. p. 21-43. doi: 10.1007/978-94-0070434-3_2
  5. Fortuner R. On the genus Dilylenchus Filipjev, 1936 (Nernatoda: Tylenchida). Revue Nematol. 1982; 5(1):17-38.
  6. Thorne G. Ditylenchus destructor n. sp. the potato rot nematode, and Ditylenchus dipsaci (Kühn, 1857) Filipjev, 1936, the teasel nematode (Nematoda: Tylenchidae). Proceedings of the helminthological Society of Washington. 1945; 12(2):27-34.
  7. Plowright RA, Caubel G, Mizen KA. Plant resistance to parasitic nematodes. In: Starr JL, Cook R, Bridge J. (eds.) Ditylenchus species. Wallingford, UK: CABI Publishing; 2002. p. 107- 139. doi: 10.1079/9780851994666.0107
  8. Hodda M, Nobbs J. A review of current knowledge on particular taxonomic features of the Australasian nematode fauna, with special emphasis on plant feeders. Australasian Plant Pathology. 2008; 37(3):308-317. doi: 10.1071/AP08024
  9. Kruus E. Impact of trade on distribution of potato rot nematode (Ditylenchus destructor) and other plant nematodes. Agronomy Research. 2012; 10(1-2):319-328.
  10. Powers TJARP. Nematode molecular diagnostics: from bands to barcodes. Annu Rev Phytopathol. 2004; 42:367-383. doi: 10.1146/annurev.phyto.42.040803.140348
  11. Naserzadeh Y, Kartoolinejad D, Mahmoudi N, Zargar M, Pakina E, Heydari M, Astarkhanova T, Kavhiza NJ. Nine strains of Pseudomonas fluorescens and P. putida: Effects on growth indices, seed and yield production of Carthamus tinctorius L. Research on Crops. 2018; 19(4):622- 632. doi: 10.31830/2348-7542.2018.0001.39
  12. Marek M, Zouhar M, Rysanek P, Havranek P. Analysis of ITS sequences of nuclear rDNA and development of a PCR-based assay for the rapid identification of the stem nematode Ditylenchus dipsaci (Nematoda: Anguinidae) in plant tissues. Helminthologia. 2005; 42(2):49-56.
  13. Esquibet M, Grenier E, Plantard O, Andaloussi FA, Caubel G. DNA polymorphism in the stem nematode Ditylenchus dipsaci: development of diagnostic markers for normal and giant races. Genome. 2003; 46(6):1077-1083. doi: 10.1139/g03-072
  14. Subbotin SA, Madani M, Krall E, Sturhan D, Moens M. Molecular diagnostics, taxonomy, and phylogeny of the stem nematode Ditylenchus dipsaci species complex based on the sequences of the internal transcribed spacer-rDNA. Phytopathology. 2005; 95(11):1308-1315. doi: 10.1094/PHYTO-95-1308
  15. Naserzadeh Y, Mahmoudi N. Chelating effect of black tea extract compared to citric acid in the process of the oxidation of sunflower, canola, olive, and tallow oils. International Journal of Agricultural and Biosystems Engineering. 2018; 12 (5): 5. doi: 10.13140/RG.2.2.12552.26887
  16. Fand BB, Amala U, Yadav D, Rathi G, Mhaske SH, Upadhyay A, et al. Bacterial volatiles from mealybug honeydew exhibit kairomonal activity toward solitary endoparasitoid Anagyrus dactylopii. Journal of Pest Science. 2019:1-12. doi: 10.1007/s10340-019-01150-4
  17. OEPP/EPPO. PM 7/87(2) Ditylenchus destructor and Ditylenchus dipsaci. Bulletin OEPP/ EPPO Bulletin. 2017; 47(3):401-419. doi: 10.1111/epp.12433
  18. Naserzadeh Y, Mahmoudi N, Pakina E. Antipathogenic effects of emulsion and nanoemulsion of cinnamon essential oil against Rhizopus rot and grey mold on strawberry fruits. Foods and Raw materials. 2019; 7(1):210-216. doi: 10.21603/2308-4057-2019-1-210-216

Copyright (c) 2019 Mahmoudi N., Naserzadeh Y., Pakina E.N., Limantceva L.A., Nejad D.K.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies