Specific Identification Method based on PCR for Drosophila melanogaster

Cover Page

Cite item

Abstract

D. melanogaster is one of the most harmful citrus fruit flies having a large number of host plants. The molecular diagnostic method has been created for identification the D. melanogaster from another non-quarantine species Drosophila spp. The proposed method for differentiation is to use the mitochondrial DNA cytochrome oxidase I gene region 709-bp. We amplified samples of DNA with primers Droso-S391 and Droso-A381 by D. melanogaster, D. suzukii, and D. Simulans collections in the laboratory samples from many countries and contrasted with sequences of other GenBank Drosophila taxa. The findings of a polymerase chain reaction (PCR) based on DNA sequence polymorphisms showed that these primers accurately identify the area of the gene as well as the unique primers of Drosophila melanogaster.

About the authors

Yousef Naserzadeh

Peoples’ Friendship University of Russia; All-Russian Plant Quarantine Centre

Author for correspondence.
Email: unaserzadeh@gmail.com

Researcher, Agro-Biotechnological Department, Agrarian and Technological Institute

Moscow, Russian Federation; Moscow region, Russian Federation

Elena N. Pakina

Peoples’ Friendship University of Russia

Email: e-pakina@yandex.ru

Associate Professor, Candidate of Biological Sciences, Agro-Biotechnological Department, Agrarian and Technological Institute

Moscow, Russian Federation

Abdorreza M. Nafchi

University Sains Malaysia

Email: amohammadi@usm.my

Professor

Penang, Malaysia

Anvar Sh. Gadzhikurbanov

Peoples’ Friendship University of Russia

Email: gadcgikurbanow@mail.ru

Agroengineering Department, Agrarian and Technological Institute

Moscow, Russian Federation

References

  1. Asplen MK, Anfora G, Biondi A, Choi DS, Chu D, Daane KM, et al. Invasion biology of spotted wing Drosophila (Drosophila suzukii): a global perspective and future priorities. Journal of Pest Science. 2015; 88(3):469-494. doi: 10.1007/s10340-015-0681-z
  2. Kanzawa T. Studies on Drosophila suzukii mats. Kofu: Yamanashi Agricultural Experimental Station; 1939.
  3. Burrack HJ, Fernandez GE, Spivey T, Kraus DA. Variation in selection and utilization of host crops in the field and laboratory by Drosophila suzukii Matsumara (Diptera: Drosophilidae), an invasive frugivore. Pest Management Science. 2013; 69(10):1173-1180. doi: 10.1002/ps.3489
  4. Parchami-Araghi M, Pont AC, Gilasian E, Basavand F, Mousavi H. First Palaearctic record of the genus Pygophora Schiner, 1868 (Diptera: Muscidae) from Iranian Baluchestan. Zoology in the Middle East. 2017; 63(3):280-282. doi: 10.1080/09397140.2017.1331589
  5. Naserzadeh Y, Mahmoudi N, Pakina E, Wase M, Anne I, Heydari M, et al. Parameters Affecting the Biosynthesis of Gold Nanoparticles Using the Aquatic Extract of Scrophularia striata and their Antibacterial Properties. Journal of Nanoanalysis. 2019; 6(2):105-114. doi: 10.22034/JNA.2019.667091
  6. Mans DR, Sairras S, Ganga D, Kartopawiro J. Exploring the global animal biodiversity in the search for new drugs-insects. J Transl Sci. 2016; 3(1):371-386. doi: 10.15761/JTS.1000164
  7. Walsh DB, Bolda MP, Goodhue RE, Dreves AJ, Lee J, Bruck DJ, et al. Drosophila suzukii (Diptera: Drosophilidae): invasive pest of ripening soft fruit expanding its geographic range and damage potential. Journal of Integrated Pest Management. 2011; 2(1): G1-G7. doi: 10.1603/IPM10010
  8. Nikolouli K, Colinet H, Renault D, Enriquez T, Mouton L, Gibert P, et al. Sterile insect technique and Wolbachia symbiosis as potential tools for the control of the invasive species Drosophila suzukii. Journal of pest science. 2018; 91(2):489-503. doi: 10.1007/s10340-017-0944-y
  9. Rota-Stabelli O, Ometto L, Tait G, Ghirotto S, Kaur R, Drago F, et al. Distinct genotypes and phenotypes in European and American strains of Drosophila suzukii: implications for biology and management of an invasive organism. Journal of Pest Science. 2020; 93(1):77-89. doi: 10.1007/s10340-019-01172-y
  10. Diepenbrock LM, Burrack HJ. Variation of within crop microhabitat use by Drosophila suzukii (Diptera: Drosophilidae) in blackberry. Journal of Applied Entomology. 2016; 141(1-2):1-7. doi: 10.1111/jen.12335
  11. Poyet M, Eslin P, Héraude M, Le Roux V, Prévost G, Gibert P, et al. Invasive host for invasive pest: when the Asiatic cherry fly (Drosophila suzukii) meets the American black cherry (Prunus serotina) in Europe. Agricultural and forest entomology. 2014; 16(3):251-259. doi: 10.1111/afe.12052
  12. Correa SC, Wille CL, Hoffer H, Boff MI, Franco CR. Oviposition preference and biology of fruit fl es (Diptera: Tephritidae) on grape vine genotypes. Revista Caatinga. 2018; 31(4):850-859. doi: 10.1590/1983-21252018v31n407rc
  13. Hauser M. A historic account of the invasion of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) in the continental United States, with remarks on their identification. Pest management science. 2011; 67(11):1352- 1357. doi: 10.1002/ps.2265
  14. Landolt PJ, Adams T, Rogg H. Trapping spotted wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), with combinations of vinegar and wine, and acetic acid and ethanol. Journal of Applied Entomology. 2012; 136(1-2):148-154. doi: 10.1111/j.1439-0418.2011.01646.x
  15. Nestel D, Nemny-Lavy E, Chang CL. Lipid and protein loads in pupating larvae and emerging adults as affected by the composition of Mediterranean fruit fly (Ceratitis capitata) meridic larval diets. Archives of Insect Biochemistry and Physiology. 2004; 56(3):97-109. doi: 10.1002/arch.20000
  16. Chang CL. Effect of amino acids on larvae and adults of Ceratitis capitata (Diptera: Tephritidae). Annals of the Entomological Society of America. 2004; 97(3):529-535. doi: 10.1603/0013-8746(2004)097[0529: EOAAOL]2.0.CO;2
  17. Rashid MA, Andongma AA, Dong YC, Ren XM, Niu CY. Effect of gut bacteria on fitness of the Chinese citrus fl , Bactrocera minax (Diptera: Tephritidae). Symbiosis. 2018; 76(1):63-69. doi: 10.1007/s13199-018-0537-4
  18. Green L, Battlay P, Fournier-Level A, Good RT, Robin C. Cisand trans-acting variants contribute to survivorship in a naïve Drosophila melanogaster population exposed to ryanoid insecticides. Proceedings of the National Academy of Sciences. 2019; 116(21):10424-10429. doi: 10.1073/pnas.1821713116
  19. Lachaise D, Cariou ML, David JR, Lemeunier F, Tsacas L, Ashburner M. Historical biogeography of the Drosophila melanogaster species subgroup. In: Hecht MK, Wallace B, Prance GT. (eds). Evolutionary biology. Boston, MA: Springer; 1988. p.159-225. doi: 10.1007/978-1-4613-0931-4_4
  20. Lee CH, Rimesso G, Reynolds DM, Cai J, Baker NE. Whole-genome sequencing and iPLEX MassARRAY genotyping map an EMS-induced mutation affecting cell competition in Drosophila melanogaster. G3: Genes, Genomes, Genetics. 2016; 6(10):3207-3217. doi: 10.1534/g3.116.029421
  21. Lillesaar C, Gaspar P. Serotonergic Neurons in Vertebrate and Invertebrate Model Organisms (Rodents, Zebrafish, Drosophila melanogaster, Aplysia californica, Caenorhabditis elegans). In: Pilowsky PM. (ed.) Serotonin. Academic Press; 2019. p.49-80. doi: 10.1016/B978-0-12-800050-2.00003-6
  22. Lynch ZR, Schlenke TA, de Roode JC. Evolution of behavioural and cellular defences against parasitoid wasps in the Drosophila melanogaster subgroup. Journal of Evolutionary Biology. 2016; 29(5):1016-1029. doi: 10.5061/dryad.5t5m4
  23. Mahmoudi N, Naserzadeh Y, Pakina EN, Limantceva LA, Nejad DK. Molecular identifi of Ditylenchus destructor nematode with PCR Species-Specific primers in the Moscow region. RUDN Journal of Agronomy and Animal Industries. 2019; 14(4):430-436. doi: 10.22363/2312-797X-2019-14-4-430-436
  24. Melcarne C, Ramond E, Dudzic J, Bretscher AJ, Kurucz É, Andó I, et al. Two Nimrod receptors, NimC1 and Eater, synergistically contribute to bacterial phagocytosis in Drosophila melanogaster. The FEBS Journal. 2019; 286(14):2670-2691. doi.org/10.1111/febs.14857
  25. Naserzadeh Y, Kartoolinejad D, Mahmoudi N, Zargar M, Pakina E, Heydari M, et al. Nine strains of Pseudomonas fluorescens and P. putida: Effects on growth indices, seed and yield production of Carthamus tinctorius L. Research on Crops. 2018; 19(4):622-632. doi: 10.31830/2348-7542.2018.0001.39
  26. Naserzadeh Y, Nafchi AM, Mahmoudi N, Nejad DK, Gadzhikurbanov ASh. Effect of combined use of fertilizer and plant growth stimulating bacteria Rhizobium, Azospirillum, Azotobacter and Pseudomonas on the quality and components of corn forage in Iran. RUDN Journal of Agronomy and Animal Industries. 2019; 14(3):209-224. doi: 10.22363/2312-797X-2019-14-3-209-224
  27. Yassin A, Debat V, Bastide H, Gidaszewski N, David JR, Pool JE. Recurrent specialization on a toxic fruit in an island Drosophila population. Proceedings of the National Academy of Sciences. 2016; 113(17):4771-4776. doi: 10.1073/pnas.1522559113
  28. Naserzadeh Y, Mahmoudi N, Pakina E. Antipathogenic effects of emulsion and nanoemulsion of cinnamon essential oil against Rhizopus rot and grey mold on strawberry fruits. Foods and Raw Materials. 2019; 7(1):210- 216. doi: 10.21603/2308-4057-2019-1-210-216.

Copyright (c) 2020 Naserzadeh Y., Pakina E.N., Nafchi A.M., Gadzhikurbanov A.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies