Анализ молекулярных данных паразитоидных мух семейства Tachinidae

Обложка

Цитировать

Полный текст

Аннотация

Паразитоиды семейства Tachinidae играют важную роль в биологическом контроле, тем не менее филогенетические взаимоотношения надродовых групп мало изучены. Здесь мы представляем филогенетический анализ семейства, основанный на молекулярных данных. Филогенетический анализ в молекулярном исследовании, включающем 73 вида, принадлежащих к 30 родам тахинид, включая четыре признанных в настоящее время подсемейства (Dexiinae, Exoristinae, Phasiinae, Tachininae) и 20 триб. Тахиниды реконструируются как монофилетический комплекс на основании морфологических данных и с четырьмя негомоплазиозными апоморфиями (синапоморфиями). Монофилия хорошо поддерживается начальной загрузкой. Наш морфологический анализ в целом поддерживает подсемейство, объединяющее Dexiinae + Phasiinae, в то время как Tachininae + Exoristinae не поддерживается как одна группа, и только Exoristinae и Phasiinae реконструируются как монофилетические сообщества. Dexiinae, которые ранее считались устоявшимся монофилетическим сообществом (за исключением нескольких исследований), реконструированы как полипарафилетические по отношению к Phasiinae. Tachininae реконструированы как парафилетический класс, в то время как монофилия Exoristinae была восстановлена, за исключением рода Admontia Brauer & Bergenstamm, который возник в подсемействе Tachininae. В отличие от молекулярного анализа все подсемейства представляют собой полипарафилетические группы, в которых они взаимодействуют друг с другом, за исключением Phasiinae, которое включает большинство своих таксонов в монофилетическую группу.

Полный текст

Introduction

Tachinidae are characterized as among the most diverse families of Diptera in characters, colors and behavior, in addition to the hosts. This family counts about 10 000 species [1] and is composed of four subfamilies (Phasiinae, Dexiinae, Tachininae and Exoristinae) including nearly 60 tribes [2, 3]. At least 15 orders of Arthropoda are hosts by all known tachinid species that considered as internal parasitoids of insects or other arthropods [1]. However, the most of tachinid species parasitize holometabolous insect larvae (Lepidoptera, Coleoptera, and Hymenoptera) or adult beetles, as well as true bugs [1, 2]. As enemies of these primarily phytophagous groups, tachinids play important role in biological control.

Materials and methods

Tachinids were obtained by hand collecting and malaise trap from Russia and Egypt, and one species from Panama. Tachinidae were sampled to provide representative specimens (A total of 120 specimens were analyzed) of the four subfamilies (Dexiinae, Exoristinae, Phasinae, Tachininae), and 30 genera of 20 tribes, and out-group based on previous works we selected the studied taxa [2, 4–7].

We collected nearly all the sequences of COI gene (mDNA) for tachinid species that opposite the genera which we brought from Russia and Egypt. They were composed of 73 nucleotide sequences collected from NCBI with Accession numbers (table 1). We used COI gene in this study to compare its ability as a traditional marker for solving the cladistic relationships within the radiative family Tachinidae with the recent studies that used new markers, which revealed more of these relationships for this family. COI gene was used only once but very few species of Tachinidae family were used for phylogeny. Alignment Sequences and analysis were performed by MEGAX program [8].

Table 1
Nucleotide sequences that collected from NCBI [1] and analyzed in this study

Species

Accession number

Number of base pairs

Link (URL)

Estheria petiolata

KX844428

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/KX844428.1/

Rondania nr. dimidiata

KX843735

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/KX843735

Athrycia cinerea

KR 395891

585 bp

https://www.ncbi.nlm.nih.gov/nuccore/KR 395891

Thelaira nigripes

KX844342

622 bp

https://www.ncbi.nlm.nih.gov/nuccore/KX844342

Thelaira americana

HM417100

654 bp

https://www.ncbi.nlm.nih.gov/nuccore/HM417100

Thelaira solivaga

KX844207

620 bp

https://www.ncbi.nlm.nih.gov/nuccore/KX844207

Voria erasmocoronadoi

MF325369

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/MF325369

Voria sp.

KR 386101

579 bp

https://www.ncbi.nlm.nih.gov/nuccore/KR 386101

Admontia degeerioides

JN 302070

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/JN 302070

Admontia grandicornis

KR 621021

555 bp

https://www.ncbi.nlm.nih.gov/nuccore/KR 621021

Bactromyia aurulenta

MG475545

516 bp

https://www.ncbi.nlm.nih.gov/nuccore/MG475545

Prooppia crassiseta

HQ581756

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/HQ581756

Drino sp.

HM882180

521 bp

https://www.ncbi.nlm.nih.gov/nuccore/HM882180

Elodia ambulatoria

KX844551

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/KX844551

Cylindromyia bicolor

MN 868900

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/MN 868900

Cylindromyia rufipes

MN 868879

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/MN 868879

Cylindromyia intermedia

MK660720

312 bp

https://www.ncbi.nlm.nih.gov/nuccore/MK660720

Cylindromyia fumipennis

HQ945071

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/HQ945071

Gymnosoma nudifrons

KP044778

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/KP044778

Ectophasia crassipennis

MN 868783

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/MN 868783

Phasia aurulans

JN 310367

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/JN 310367

Phasia mesnili

KX844068

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/KX844068

Phasia pusilla

MN 868790

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/MN 868790

Phasia punctigera

HM417303

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/HM417303

Phasia aurulans

KM571524

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/KM571524

Phasia obesa

JN 310368

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/JN 310368

Leucostoma sp.

KP047351

593 bp

https://www.ncbi.nlm.nih.gov/nuccore/KP047351

Leucostoma simplex

KX843880

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/KX843880

Leucostoma tetraptera

KX843764

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/KX843880

Leucostoma gravipes

KR 520627

629 bp

https://www.ncbi.nlm.nih.gov/nuccore/KR 520627

Leucostoma meridianum

KX843930

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/KX843930

Macquartia nudigena

KX844477

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/KX844477

Macquartia dispar

JN 298651

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/JN 298651

Macquartia tessellum

KY 846615

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/KY 846615

Macquartia viridana

KX844333

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/KX844333

Mintho rufiventris

KX843818

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/KX843818

Nemoraea pellucida

KX844529

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/KX844529

Peribaea setinervis

KY 421538

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/KY 421538

Peribaea hertingi

KX844508

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/KX844508

Peribaea setinervis

KX844049

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/KX844049

Peribaea tibialis

KX843900

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/KX843900

Siphona grandistylum

KX844528

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/KX844528.1/

Siphona hokkaidensis

HM431957

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/HM431957

Siphona sonorensis

JF871072

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/JF871072

Siphona plusiae

HM417418

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/HM417418

Actia nr. cinerea

JF271139

657 bp

https://www.ncbi.nlm.nih.gov/nuccore/JF271139

Actia interrupta

KR 395397

588 bp

https://www.ncbi.nlm.nih.gov/nuccore/KR 395397

Actia diffidens

KR 394266

549 bp

https://www.ncbi.nlm.nih.gov/nuccore/KR 394266

Loewia sp.

KR 393520

562 bp

https://www.ncbi.nlm.nih.gov/nuccore/KR 393520

Loewia foeda

KR 667561

589 bp

https://www.ncbi.nlm.nih.gov/nuccore/KR 667561

Loewia erecta

KX844484

630 bp

https://www.ncbi.nlm.nih.gov/nuccore/KX844484

Loewia brevifrons

KX844315

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/KX844315

Loewia adjuncta

KX843701

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/KX843701

Synactia parvula

KX844364

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/KX844364

Bithia modesta

MG968012

532 bp

https://www.ncbi.nlm.nih.gov/nuccore/MG968012

Bithia acanthophora

KX844149

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/KX844149

Bithia spreta

KX843739

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/KX843739

Strongygaster celer

KP046934

635 bp

https://www.ncbi.nlm.nih.gov/nuccore/KP046934

Strongygaster sp.

JF867537

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/JF867537

Strongygaster triangulifera

HM412619

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/HM412619

Nowickia alpina

KX843975

590 bp

https://www.ncbi.nlm.nih.gov/nuccore/KX843975

Nowickia ferox

KX844164

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/KX844164

Nowickia marklini

MF836056

588 bp

https://www.ncbi.nlm.nih.gov/nuccore/MF836056

Nowickia sp.

KM571428

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/KM571428

Dexiosoma caninum

JN 310385

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/JN 310385

Microphthalma obsoleta

HQ945084

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/HQ945084

Microphthalma disjuncta

HQ583135

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/HQ583135

Microphthalma europaea

KX844102

658 bp

https://www.ncbi.nlm.nih.gov/nuccore/KX844102

Calliphora vomitoria (outgroup)

AY 536643

414 bp

https://www.ncbi.nlm.nih.gov/nuccore/AY 536643

Results

This analysis includes 73 nucleotide sequences. 683 positions were the total of the final dataset. Phylogenetic trees were obtained by different methods (Maximum Likelihood «ML» and Neighbor Joining «NJ»).

The both analyses (ML and NJ) using COI gene showed that all subfamilies were polyparaphyletic except Phasiinae; most tribes used in this study (three from four tribes) were monophyletic; Cylindromyiini tribe and Gymnosoma nudifrons species were outside of the phasiin clade. Unlike all previous phylogenetic studies, we found that the Phasiinae were grouped as sisters to the Tachininae (in part). And all other subfamilies relationships contained diversity.

According to the ML analysis, dividing Tachinidae into two big clades was observed:

The first clade includes Tachininae (Siphonini + Nemoraeini + Macquartini + Tachinini) and Phasiinae (Phasiini + Gymnosomatini + (Leucostomatini + Proopia crassiseta (Aldrich & Webber, 1924))).

The second clade includes the subfamilies (remaining Tachininae, Dexiinae and Exoristinae) in addition to genus Cylindromyia Meigen, 1803 and species Gymnosoma nudifrons.

The first clade is divided into two groups:

1)    Siphonini ((Peribaea Robineau-Desvoidy, 1863 + Goniocera Brauer & Bergenstamm, 1891) + Siphona Meigen, 1803);
2)    Siphonini ((Peribaea + Goniocera) + Siphona) are monophyletic group except Actia cinerea (Macquart, 1834) and Peribaea tibialis (Robineau-Desvoidy, 1851), where the first is clustered with Exoristinae genera (BACTROMYIA Brauer & Bergenstamm, 1891 and Admontia Brauer & Bergenstamm, 1889) and Dexinae, while the second is placed as a sister to Nemoraea pellucida (Meigen, 1824).

Phasiinae is divided into two groups:

The first genus composed of Leucostoma (Leucostomatini) + the exoristin species Proopia crassiseta (Erycini) that is originated within Phasiinae.
The second includes Ectophasia crassipennis (Fabricius, 1794) (Gymnosomatini) + genus Phasia Latreille, 1804 (Phasini).

Phasiinae are represented here by 5 genera (4 tribes), 3 tribes (Phasiini, Leucostomatini and Gymnosomatini by genus Ectophasia Townsend, 1912) clustered as monophyletic group. While the Cylindromyia (Cylindromyiini) is placed as a sister with (Synactia Villeneuve, 1915 and Loewia Egger, 1856) and Gymnosoma Meigen, 1803 is sister with Exoristinae (Admontia Brauer & Bergenstamm, 1889 and Elodia Robineau-Desvoidy, 1863). Genus Phasia (Phasini), Leucostoma Meigen, 1803 (Leucostomatini) and Cylindromyia (Cylindromyiini) are recovered (reconstructed) as monophyletic groups.

Tachininae (part) include:

1) Group genus Nemoraea (Nemoraeini) + Siphonin species Peribaea tibialis.
2) Group Nowickia Wachtl, 1894 (Tachinini) + Macquartia Robineau-Desvoidy, 1830 (Macquartini).

The genera Macquartia and Nowickia are weakly supported as sisters (29 %) and this cluster is placed as a sister to (Nemoraea pellucida+ Peribaea tibialis).

The second variable clade splits into two groups.

The first group includes two assemblages:

Strongygaster Macquart, 1834 (Strongegasterini) + ((Gymnosoma nudifrons (Phasiinae) + Admontia blanda (Fallén, 1820)) + Admontia egeerioides (Coquillett, 1895)) + Elodia ambulatoria (Meigen, 1824)) the latter three Exoristinae.

Tachininae (part) (Mintho Robineau-Desvoidy, 1830 (Minthoini)) + (Bithia RobineauDesvoidy, 1863 (Leskini)), where Estheria petiolata (Bonsdorff, 1866) (Dexiinae) and Voria erasmocoronadoi Fleming & Wood, 2017 (Dexiinae) are sisters to Bithia.

Gymnosoma nudifrons (Phasiinae) (this species is a sister with Admontia blanda) is originated within the exoristin two genera Admontia and Elodia and both (Gymnosoma nudifrons, Admontia and Elodia) are clustered as a sister group to Strongegaster (Strongegasterini) that is placed in unstable subfamily, where morphologically in our study was a sister with Phasiinae as in Cerreti 2014. While that in [3] was positioned within Tachininae.

The Tachininae genus Mintho rufiventris (Fallén, 1817) is a sister with the cluster [Voria erasmocoronadoi (Voriini) + (Estheria petiolata (Dexiini) + Bithia)].

The second group is composed of:

A-    [Cylindromyia (Phasiinae) + (Loewia (Loewini) + Synactia (Ernestini)] latter two belong to Tachininae) and cluster is a sister to the next assemblage.

B-    The two species of Thelaira Robineau-Desvoidy, 1830 (voriini, Dexiinae) as a sister to the following two clades:

First: Thelaira americana Brooks, 1945 sister to [(Voria sp. + Athrycia cinerea (Coquillett, 1895)) (voriini, Dexiinae) + [(Bactromyia aurulenta (Meigen, 1824) + Admontia grandiconis (Zetterstedt, 1849) (the two Exoristinae)) + (Nowickia marklini Zetterstedt, 1838 + Actia cinerea)]].

Second: [Microphthalma europaea Egger, 1860 + (Microphthalma Macquart, 1844 (remaining species) + Dexiosoma)] this clade belongs to tribe Megaprosopini (Tachininae).

Cylindromyia (Cylindromyini) is a sister with the two genera Loewia and Synactia belonging to subfamily Tachininae. And, this assemblage is a sister to Dexiinae, Exoristinae and Tachininae taxa.

Voriini tribe taxa, Thelaira Americana sister to (Voria sp. + Athrycia cineria) are clustered in one group with the two Exoristinae species (Bactromyia aurulenta + Admontia grandiconis) and (Bactromyia aurulenta (Eryciini) + Admontia grandiconis (Blondellini)) and Tachininae species (Nowickia marklini (Tachinini) + Actia cinerea (Siphonini)).

In spite of Voriini was clustered in one clade (first clade), it is not monophyletic group (graduated), where Thelaira solivaga (Harris, 1780) and Thelaira nigripes (Fabricius, 1794) are sisters with remaining voriini, Exoristinae and Tachininae taxa and Voria erasmocoronadoi are placed in another clade.

The tribe Megaprosopini is moderately supported (72 %) as monophyletic and represented here by two genera Microphthalma and Dexiosoma Rondani, 1856, where Microphthalma europea is a sister with Microphthalma (remaining species) + Dexiosoma caninum (Fabricius, 1781), where Microphthalma is not clustered as monophyletic group.

NJ analysis method showed that the cluster [Siphonini + (Mintho rufiventris + (Admontia + Gymnosoma nudifrons)] is a sister to all rest of Tachinidae. Strongygaster + (Thelaria and Elodia) are grouped as a sister with Phasiinae and both are clustered as a sister group with the variable clade [Tachininae (Ernitini, Loewiini, Megaprosopini, Actia cinerea and Nowickia marklini)], [Exoristinae (Bactromyia aurulenta and Admontia grandicornis)], [Dexiinae (Athrycia cinerea, Thelaira americana and Voria sp.)] and [genus Cylindromyia]. This big group is placed as a sister with the remaining Tachininae where the two Dexiinae species (Estheria petiolata and Voria erasmocoronadoi) are originated within it.

Discussion

It has long been proposed that the Tachinidae are a monophyletic clade depending on larval and adult characters [2, 9] and the current molecular studies nearly entirely reported this view [3, 5, 10, 15]. However, the works so far contain few outgroup taxa [4], unable to solve this issue.

The big split of subfamilies in recent studies grouping Phasiinae + Dexiinae and Exoristinae + Tachininae was strongly supported whether using morphological data in [2] or molecular by [3, 10, 15]. This hypothesis, first proposed by [10], reports other one differs from previous that clustered subfamilies containing (Phasiinae + Exoristinae) and (Dexiinae + Tachininae, [11]).

Our (molecular) dendograms (figs. 2 and 3 show that all the subfamilies are polyparaphyletic except Phasiinae that is grouped as monophyletic group and confirmed by [2] and molecular by [1, 3, 10], exclusive placement of Cylindromyia (Fig. 2) is positioned as a sister to Tachininae taxa, weakly supported (17 % ML; 20 % NJ) and agrees with [10] in outside of this genus from Phasiinae. It is reported in [10] that the suggestion that Cylindromyiini may not be included in Phasiinae, or that the subfamily itself may not be monophyletic group is novel. However, using greater taxon sampling in [2, 3, 15] revealed the monophyly of Phasiinae with Cylindromyini.

A potential solution would be to split the subfamily Phasiinae along these statistical lines and create a monophyletic Phasiinae and a new monophyletic subfamily Cylindromyiinae. However, Cylindromyiini shares many traits with Dexiinae and several dexiines have historically been placed in Cylindromyiini (notably Epigrimyia Townsend, 1891 and Beskia Brauer & Bergenstamm, 1889). Before Cylindromyiini can be elevated to subfamily status, the status of Dexiinae and its relationship to Phasiinae needs to be solidified [15].

We placed the enigmatic genus Strongygaster (clustered with Thelaria and Elodia) with very weak confidence as a sister to Phasiinae (NJ analysis) and originated within Tachininae and Exoristinae (ML analysis), where it had been previously placed by [13] and others [3, 15].

However, some authors [3, 14], reported Strongygastrini to be joined with Tachininae, Strongygaster is apparently similar to Phasia and some other phasiines, with large compound eyes and few bristles, but the biology does not couple with Phasiinae, and phallic reduction increases the confusion relationships. The morphological and molecular phylogenetic analyses [2, 15] respectively, has also been supported the position of Strongygaster within Phasiinae that correspond with our morphological study (fig. 1).

Relationships among the Dexiinae are among the most poorly supported in our analyses. In analyses of less informative COI gene, the few included dexiine taxa in ML are grouped in a cluster as sisters to each other and with other Tachininae and Exoristinae taxa, but not in monophyletic clade. In addition, Estheria petiolata and Voria erasmocoronadoi are clustered as sisters out of this clade. While in NJ they are widely dispersed across the tree and in both cases the relationships among them (Dexiinae taxa) are unclear. This result about Dexiinae relationships also was observed by [8] using the same marker COI but a very few Tachinidae taxa were used. However, in [3] the Dexiinae comprised a well-supported monophyletic Dexiinae, relationships among tribes within the subfamily exhibited more uncertainty.

Fig. 1. Dendogram was constructed using the Maximum Parsimony (MP) method. Pollenia sp. and Calliphora sp were used as out groups. On the branches — white circles are homoplastic (plesiomorphic) characters, and black circles are autapomorphic characters

Fig. 2. Maximum likelihood phylogeny based on COI gene analysis. ML bootstrap values are shown above

Fig. 3. The evolutionary history was reconstructed using the Neighbor-Joining method

Monophyly of the subfamily Exoristinae has been supported by all six major phylogenetic analyses of Tachinidae [2–5, 15], and it is supported here as well (in our morphological tree), but it was not supported in our molecular analysis, where Exoristinae taxa are scattered on the tree. Prooppia Townsend, 1926, is within Phasiinae, while Bacteromyia aurulenta and Admontia grandicornis are originated within tachinin and dexiin taxa. Admontia (remaining speices) and Elodia ambulatoria are sisters with Strongygaster.

Tachininae are the most morphologically heterogeneous subfamily of Tachinidae, lacking clear morphological synapomorphies [12]. In the recent morphological analysis, [2] found the Tachininae to be polyphyletic, with clades of Myiophasiini + Palpostomatini, Macquartini and Ormiini and in molecular [3] Myiophasiini + Macquartini (none of which is represented here except Macquartia) were placed at the base of Tachinidae, and the subfamily being paraphyletic with respect to the Exoristinae as in our study, Tachininae is a paraphyletic group and scattered along the tree. Here, some Tachininae (Tachinini, Macquartini, Nemoraeini and Siphonini) are sisters with Phasiinae clade, while Ernestini and Loewini are sisters with Cylindromyini. In addition, Megaprosopini is a sister with Actia cinerea and Nowickia marklini with Dexiinae taxa. Moreover, Minthioini and Leskini are sisters with Dexiinae and Exoristinae. The Monophyly of Siphonini was supported in previous studies [2, 3], and it is in agreement with our study but in our analysis there is exception, where genus Actia and Peribia tibialis are out of this tribe.

In the morphological and molecular analyses (figs. 2 and 3, the relationships of some Tachininae taxa are nearly similar as following:

Macquartia (Macquartini) is a sister to Nowickia (Tachini) and both are clustered with Nemoraea (Nemoraeini).

Morphologically, Loewia and Synactia are positioned in the base of the tree, where, in contrast to molecular analysis, but with the same relationship, they are grouped as sisters.

In addition, Monophyly of Megaprosopini (Microphthalma and Dexiosoma) is moderately supported in both analyses. Moreover, Mintho-leskiine is clustered in ML (COI) and morphological analyses but it is dispersed (separated) in NJ analysis.

Conclusion

We can conclude that additional taxa sampling and using informative markers (genes) will be necessary to resolve some questionable taxa specially the higher taxa.

However, we used few taxa for each genus and each tribe, but observed that using COI gene does not have ability to recover (reveal) the subfamilies as monophyletic and reveal its problems. While, the same marker (COI) revealed that the most of the genera and tribes are monophyletic groups:

Tribes: Siphonini, Megaprosopini, Strongygasterini, Leucostomatini, Macquartini, Tachinini (Nowickia), Phasiini, Cylindromyini.

Genera: Macquartia, Nowickia, Siphona, Peribaea, Leucostoma, Cylindromyia, Phasia, Microphthalma, Strongygaster, Admontia, Bithia, Leowia.

COI gene used in the study was observed to be very poor informative for solving (could not solve) relationships in the higher taxonomic tachinid taxa.

 

1 Nucleotide. Search database. https://www.ncbi.nlm.nih.gov/nuccore/HM417303

×

Об авторах

Элсайед Эль-Хашаш Арафа

Российский университет дружбы народов; Научно-исследовательский институт защиты растений, Центр сельскохозяйственных исследований

Автор, ответственный за переписку.
Email: Arafa.elhashash@yahoo.com
ORCID iD: 0000-0001-5210-5515

аспирант

117198, Российская Федерация, г. Москва, ул. Миклухо-Маклая, д. 8/2

Список литературы

  1. Stireman III JO, O’Hara JE, Wood DM. Tachinidae: evolution, behavior, and ecology. Annual Review of Entomology. 2006; 51(1):525-555.
  2. Cerretti PO, O’Hara JE, Wood DM, Shima H, Inclan DJ, Stireman III JO. Signal through the noise? Phylogeny of the Tachinidae (Diptera) as inferred from morphological evidence. Systematic Entomology. 2014; 39(2):335-353. doi: 10.1111/syen.12062
  3. Stireman III JO, Cerretti P, O’Hara JE, Blaschke JD, Moulton JK. Molecular phylogeny and evolution of world Tachinidae (Diptera). Systematic Entomology. 2019; 139:106358. doi: 10.1016/j.ympev.2018.12.002
  4. Stireman III JO. Phylogenetic relationships of tachinid flies in subfamily Exoristinae (Tachinidae: Diptera) based on 28s dDNA and elongation factor-1α. Systematic Entomology. 2002; 27(4):409-435. doi: 10.1046/j.1365-3113.2002.00187.x
  5. Tachi T, Shima H. Molecular phylogeny of the subfamily Exoristinae (Diptera, Tachinidae), with discussions on the evolutionary history of female oviposition strategy. Systematic Entomology. 2010; 35(1):148-163 doi: 10.1111/j.1365-3113.2009.00497.x
  6. Wood DM. Tachinidae. In: McAlpine JF, Peterson BV, Shewell GE, Teskey HJ, Vockeroth JR, Wood DM. (eds.) Manual of Nearctic Diptera. Volume 2. Ottawa, Canada; 1987. p.1193-1269.
  7. Tschorsnig HP, Richter VA. Family Tachinidae. In: Papp L, Darvas B. (eds.) Contributions to a manual of Palaearctic Diptera (with special reference to flies of economic importance). Volume 3. Higher Brachycera. Budapest: Science Herald; 1998. p.691-827.
  8. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution. 2018; 35(6):1547-1549. doi: 10.1093/molbev/msy096
  9. McAlpine JF. Phylogeny and classification of the Muscomorpha. In: McAlpine JF, Wood DM (Eds) Manual of Nearctic Diptera. Volume 3. Agriculture Canada Monograph 32; 1989. Pp. 1397-1518, 1333-1581.
  10. Winkler IS, Blaschke JD, Davis DJ, Stireman III JO, O’Hara JE, Cerretti P, Moulton JK. Explosive radiation or uninformative genes? Origin and early diversification of tachinid flies (Diptera: Tachinidae). Molecular Phylogenetics and Evolution. 2015; 88:38-54. doi: 10.1016/j.ympev.2015.03.021
  11. Shima H. Parasitic way of life in tachinid flies. Insectarium. 1989; 26:4-9, 46-51, 88-94, 120-126. (In Japanese)
  12. Mesnil LP. 64g. Larvaevorinae (Tachininae). In: Die Fliegen der Palaearktischen Region. 1966; 10:881-928.
  13. Herting B. Catalogue of Palearctic Tachinidae (Diptera). In: Stuttgarter Beiträge zur Naturkunde. Serie A (Biologie). 1984.
  14. O’Hara JE, Wood DM. Catalogue of the Tachinidae (Diptera) of America north of Mexico. In: Memoirs on Entomology, International Volume 18. 2004.
  15. Blaschke JS, Stireman III JO, O’Hara JE, Cerretti P, Moulton JK. Molecular phylogenetics and piercer evolution in the bug-killing flies (Diptera: Tachinidae: Phasiinae). Systematic Entomology. 2018; 43(1):218-238. doi: 10.1111/syen.12272

Дополнительные файлы

Доп. файлы
Действие
1. Fig. 1. Dendogram was constructed using the Maximum Parsimony (MP) method. Pollenia sp. and Calliphora sp were used as out groups. On the branches — white circles are homoplastic (plesiomorphic) characters, and black circles are autapomorphic characters

Скачать (79KB)
2. Fig. 2. Maximum likelihood phylogeny based on COI gene analysis. ML bootstrap values are shown above

Скачать (89KB)
3. Fig. 3. The evolutionary history was reconstructed using the Neighbor-Joining method

Скачать (95KB)

© Арафа Э.Э., 2022

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах