Пространственное размещение посевов сельскохозяйственных культур в России
- Авторы: Савин И.Ю.1,2, Аветян С.А.1,3, Шишконакова Е.А.1, Жоголев А.В.1
-
Учреждения:
- ФИЦ «Почвенный институт им. В.В. Докучаева»
- Российский университет дружбы народов
- Московский государственный университет им. М.В. Ломоносова
- Выпуск: Том 17, № 3 (2022)
- Страницы: 263-286
- Раздел: Растениеводство
- URL: https://agrojournal.rudn.ru/agronomy/article/view/19797
- DOI: https://doi.org/10.22363/2312-797X-2022-17-3-263-286
Цитировать
Полный текст
Аннотация
Информация о пространственном распределении сельскохозяйственных культур в России существует только в виде статистических данных, агрегированных на уровне регионов или хозяйств, что не позволяет получить данные о фактическом пространственном размещении посевов. Попытки использовать спутниковые данные для картирования отдельных культур также пока не увенчались успехом. Мы попытались дезагрегировать статистические данные о площадях посевов, используя карту распаханных почв России, информацию о севооборотах и оценку пригодности земель для выращивания конкретных культур. Анализ был проведен по 28 наиболее распространенным в России культурам. Были построены карты распространения этих культур в стране. Карты дают представление о географии посевов в России и могут быть использованы для совершенствования подходов к спутниковому картографированию и мониторингу посевных площадей в стране.
Ключевые слова
Полный текст
Introduction
Information about crop location is important for planning and forecasting agricultural production and regulating agricultural markets. It is widely used in shaping overall agricultural land use policies [1], in crop insurance [2, 3], in planning production and sales of seeds, fertilizers and crop protection products [4] and in planning humanitarian assistance to food insecure countries [5, 6].
In many countries around the world, where there is a well-developed statistical service, information on crop area is collected as part of the statistical reporting of agricultural enterprises and farmers. It is very time-consuming to collect this information, and in most cases, the specific field’s location where the crop is grown is not included.
In many countries of the world, information on cropped area is not regularly collected at all. The only source of data on the areas of cultivation of individual crops for these countries is the expert estimates of FAO experts [7].
In recent decades, there has been active research in developing methods for satellite monitoring of crops [8—11]. The main goal of such research was to develop rapid, accurate, and low-cost methods for crop condition assessment and yield prediction. Most of the currently available approaches are based on the analysis of seasonal and multi-year dynamics of crop vegetation index values [12]. In order to aggregate vegetation index values for all pixels with crops of a particular crop and exclude from the analysis pixels where the crop in question is not cultivated, accurate individual crop masks are needed. Therefore, methods are being developed to detect individual crops from satellite data to create their masks [13]. But, due to insufficient data at the appropriate scale, these methods are still little used in operational satellite monitoring systems. The values of vegetation indices are at best aggregated for the entire arable land area of the analyzed region [8, 10].
In Russia during the Soviet era, there was a well-functioning system of agricultural statistical data collection. In addition, agricultural enterprises used to strictly adhere to directives about sown areas, which made the advance knowledge of production fairly accurate [14]. After the collapse of the Soviet Union agricultural producers became increasingly oriented to the needs of the market when choosing crops to cultivate, which significantly and unpredictably changed the geography of individual crop sowing. Climate change has also had an impact. Some crops can now be grown in previously unsuitable areas. As a result, there has been a strong change in the sowing area of crops. In many regions of Russia, it is especially noticeable for such crops as soybean, rape, sunflower, maize [15].
The goal of our research was to create maps of the location of the main crops in Russia for 2020, which would provide accurate information about the geography of crops in the country, and would also serve as a basis for refining the approaches of satellite monitoring of crops.
Materials and Methods
To construct the map, we used statistical data on the areas of crops sown in 2020, collected by the State Statistics Committee of Russia for all administrative districts of the country (a total of 1868 administrative districts) [16]. Data for the following crops were analyzed: winter and spring wheat, winter and spring barley, winter and spring rye, winter and spring rape, winter and spring triticale, oats, maize for grain, sunflowers for seed, sorghum, rice, sugar beets, potatoes, millet, buckwheat, peas, soybeans, flax for oil, flax for fiber, mustard, redeye (Camelina saliva Czantz.), annual and perennial grasses, and maize for silage. Data are presented in hectares.
Only annual crops were analyzed. This is due to the fact that perennial crops are less important for Russia and their areas are insignificant. In addition, the existing satellite agricultural monitoring systems in the world also do not include perennial crops in the analysis.
We used a vector map of administrative boundaries of Russia (analogue of the GAUL database level 3 (The Global Administrative Unit Layers dataset, implemented by FAO within the CountrySTAT and Agricultural Market Information System (AMIS) projects), which were digitized from topographic maps of scale 1:50000 [17].
A vector map of ploughed soils in Russia was also used [18]. The geometric part of the map represents the mapping units of the vector soil map of Russia (vector map, created using original paper soil map of Russia at scale 1:2,5 mln. It is available in a form of geotiff (pixel size is 300 m) file or as a shape file) [19], to which the information about the type of prevailing and three associated soils in each soil-geographical unit is attached. Also in the attribute part of this database is the percentage of plowing of each of these soils is indicated. There are a total of 25711 map units, with attributive information attached to each unit.
The suitability of the ploughed soils for cultivation of specific crops was assessed. The assessment was done based on the FAO approaches [20], adapted to the specifics of Russian crops [21]. The evaluation was based on the analysis of soil properties, without taking into account the terrain features and specifics of the climate. All soils were assigned to 3 evaluation classes: suitable without limitations, limited suitable, and unsuitable.
Literature data on typical crop rotations used in different oblasts and agro-climatic zones of Russia were also used in the analysis [22]. It should be noted that the information on crop rotations is rather schematic and is of a recommendatory nature. There is no information on the extent to which crop rotations are maintained in a particular area.
All vector maps used for the analysis were presented in a projection with the following parameters:
- Lambert Azimuthal Equal Area;
- Datum: WGS 1984;
- Ellipsoid: WGS 84 (a=6378137.00, 1/f=298.257223563);
- False Easting: 0.0000;
- False Westing: 0.0000;
- Central meridian: 100.00 E; – Central parallel: 45.00 N; – Scale factor: 1.000.
In the first stage of the study, the map of ploughed soils of Russia was crossed with the map of administrative districts of Russia. After that, statistical data on the areas sown to individual crops were linked to the divisions and names of ploughed soils within each administrative district. When linking individual crops to a specific soil, the suitability of that soil for the crop was taken into account. Once the crops that statistically appear to be cultivated in a particular administrative area were associated with soils and soilgeographical divisions, the logic of the set of crops assigned to the same soil was analyzed in terms of possible crop rotations. On this basis, the association of crops with soils and the areas of specific crops assigned to specific soils were corrected.
A similar procedure was carried out by three independent experts. All cases of inconsistency in the experts’ decisions on a particular soil for a particular crop were discussed collegially to make a final decision by consensus.
The statistical data on cropped area was processed on Microsoft Office Excel Professional 2020. The software used for creating the maps was ILWIS v.3.3 [23].
Results and Discussion
The maps of the spatial distribution of individual crops constructed as a result of the analysis are shown in Appendix A. The maps made it possible for the first time to assess the geography of the sowing of individual crops in Russia.
According to the data obtained, potatoes, annual and perennial grasses, and oats are the most widely sown crops in Russia. These crops are cultivated almost throughout Russia. This is due to the demand for these crops in agriculture (potatoes are the main food crop for the population in many regions of the country, and oats and sown grasses are the main fodder for farm animals), as well as to the lack of climatic restrictions on their growth in the country. The main limitations to the wider spread of these crops in Russia are related to the underdeveloped infrastructure, the country’s settlements distribution or economic reasons (less profitable cultivation compared to other crops) [24].
Crops such as rice, soybeans, maize for grain, sugar beets, sorghum, and winter crops (wheat, barley, rye, triticale, rapeseed) are less common and more spatially localized. The distribution of winter crops is mostly conditioned by climate [25]. Sowing areas of winter crops are most common in the south of the European part of the country.
Also due to climatic conditions sowing areas of sorghum and maize are limited. In addition, in areas with a favorable climate, winter wheat, which is a priority for the country, is a big competitor to the sowing of these crops.
The prevalence of rice crops is related both to climatic conditions and to the crop cultivation traditions of the population and the availability of the necessary infrastructure (systems of water supply to the rice checks).
Soybean production is concentrated in two areas. The first occurs in the Chernozems (black soils) of the European part of Russia and the second in the easternmost part of the country. The concentration of crops in the Far East is largely due to the traditions of the population and the proximity to China, where this crop is very widespread. And the spread of soybean crops in the European part of Russia is due both to the ever-increasing economic demand for this crop and to trends in climate change in this territory, which is becoming increasingly favorable for soybeans.
We also consider the obtained maps as a basis for satellite detection of crops and improvement of satellite monitoring methods. To improve the quality of crop masks derived from satellite data, these masks can be combined with our crop distribution maps, and those pixels that lie outside the crop distribution ranges indicated on the map can be considered erroneous.
For example, in Russia, operational satellite-based crop monitoring is carried out only for winter crops [26]. Every year, due to crop rotations and economic reasons, crops «migrate» within the mask of arable land (Fig.). But crop sowing areas cannot spread beyond the units of the maps we have compiled, because outside these units there is no land suitable for the crops in question or there is no appropriate infrastructure. Therefore, all pixels of the winter crop mask constructed from satellite data outside of the corresponding units on our map can be considered erroneous and excluded from further analysis.
Satellite-based winter crop masks for 2020, and 2021: brown color — arable lands; green color — winter crop; dark grey lines — administrative boundaries; light grey color — graticule; red ovals delineate areas, where winter crops cannot be cultivated due to unfavorable soil conditions
In addition, our maps can be used for the construction of satellite monitoring technology in Russia not only for winter crops, but also for other crops.
The methods we used in our analysis require statistical data on crop area at the sub-national administrative unit level. Such information is in most cases unavailable for developing countries, which makes it impossible to use such an approach for their territories.
Similar to our approaches are used in European countries, in the United States and in China [10, 27, 28]. Attempts have been made to use similar approaches to create crop masks for individual crops for Russian territory as well. For example, crop masks for wheat, barley, maize, sunflower, and potato were created within the framework of the EC MARS project [28]. Similar work has been carried out in China [10]. But in these cases, the crop information was entered into a regular grid of 1×1 km in size. This led to a strong generalization of information and distortions in the display of crop areas.
Attempts to directly disaggregate crop area statistics from satellite data have been done for many years [29—31]. The results of such analysis over large areas (countries, continents, global level) are rarely subject to quality assessment, or their quality is assessed in comparison with the same statistics, which is used for disaggregation. But their margin of error can be up to tens of percent [32].
One reason for this is that in all mentioned above cases, the information was not linked to the soils and their characteristics. As a result, part of crops was shown on soils that are obviously unsuitable for cultivation of the crops in question. In our case, when creating maps, the suitability of soils was taken into account, which allows to eliminate such errors.
Conclusions
A great deal of research exploring agricultural production planning, and monitoring ignores the spatial component, and this manuscript is able to identify where main crops cultivation in Russia is located. Additionally, our maps can help researchers easily conduct studies on agricultural land use planning, crop monitoring, and crop yield forecasting in specific places.
The results can be used for improvement of modern methods of satellite-based crop monitoring in Russia by fusion of our maps with remote sensing methods of crop detection and masking.
Taking into account the spatial location of specific crops can increase the accuracy of their status monitoring and crop yield forecasting. In addition, our maps can be used to organize satellite monitoring of crops, which have not yet been monitored worldwide due to the lack of data on their geography.
Appendix A
Maps of crops in Russia, ha, black lines — administrative units’ boundaries (oblast)
Fig. A1. Winter wheat
Fig. A2. Winter barley
Fig. A3. Winter rye
Fig. A4. Winter triticale
Fig. A5. Winter rapeseeds
Fig. A6. Spring wheat
Fig. A7. Spring barley
Fig. A8. Spring rye
Fig. A9. Spring triticale
Fig. A10. Spring rapeseeds
Fig. A11. Sunflower
Fig. A12. Soyabeans
Fig. A13. Sorghum
Fig. A14. Sugar beets
Fig. A15. Redeye (Camelina saliva Czantz.)
Fig. A16. Rice
Fig. A17. Potato
Fig. A18. Peas
Fig. A19. Oats
Fig. A20. Millets
Fig. A21. Maize for grain
Fig. A22. Mustard
Fig. A23. Buckwheat
Fig. A24. Flax for oil
Fig. A25. Flax for fiber
Fig. A26. Maize for forage
Fig. A27. Annual grasses
Fig. A28. Perennial grasses
Об авторах
Игорь Юрьевич Савин
ФИЦ «Почвенный институт им. В.В. Докучаева»; Российский университет дружбы народов
Автор, ответственный за переписку.
Email: savin_iyu@esoil.ru
ORCID iD: 0000-0002-8739-5441
академик РАН, доктор сельскохозяйственных наук, заведующий отделом генезиса, географии, классификации и цифровой картографии почв, ФИЦ «Почвенный институт им. В.В. Докучаева»; профессор департамента рационального природопользования Института экологии, Российский университет дружбы народов
119017, Российская Федерация, г. Москва, Пыжевский пер., д. 7, стр. 2; Российская Федерация, 117198, г. Москва, ул. Миклухо-Маклая, д. 8Сергей Андреевич Аветян
ФИЦ «Почвенный институт им. В.В. Докучаева»; Московский государственный университет им. М.В. Ломоносова
Email: avetyan-serg@mail.ru
ORCID iD: 0000-0002-3435-9092
кандидат биологических наук, старший научный сотрудник отдела генезиса, географии, классификации и цифровой картографии почв, ФИЦ «Почвенный институт им. В.В. Докучаева»; доцент факультета почвоведения МГУ им. М.В. Ломоносова
119017, Российская Федерация, г. Москва, Пыжевский пер., д. 7, стр. 2; Российская Федерация, г. Москва, ГСП-1, Ленинские горы, д. 1, стр. 12Екатерина Анатольевна Шишконакова
ФИЦ «Почвенный институт им. В.В. Докучаева»
Email: shishkonakova_ea@esoil.ru
ORCID iD: 0000-0003-4396-2712
кандидат географических наук, старший научный сотрудник отдела генезиса, географии, классификации и цифровой картографии почв
119017, Российская Федерация, г. Москва, Пыжевский пер., д. 7, стр. 2Арсений Вадимович Жоголев
ФИЦ «Почвенный институт им. В.В. Докучаева»
Email: zhogolev_av@esoil.ru
ORCID iD: 0000-0003-2225-7037
кандидат сельскохозяйственных наук, научный сотрудник отдела генезиса, географии, классификации и цифровой картографии почв
119017 Российская Федерация, г. Москва, Пыжевский пер., д. 7, стр. 2Список литературы
- Dessart FJ, Rommel J, Barreiro-Hurlé J, Thomas F, Rodríguez-Entrena M; Espinosa-Goded M, et al. Farmers and the new green architecture of the EU common agricultural policy: A behavioural experiment. EU European Commission, Joint Research Centre. Report number: 30706, 2021. doi: 10.2760/718383
- Santeramo FG, Ramsey AF. Crop Insurance in the EU: Lessons and Caution from the US. EuroChoices. 2017; 16(3):34-39. doi: 10.1111/1746-692X.12154
- Savin IY, Kozubenko IS. Possibilities of satellite data usage in agricultural insurances. RUDN Journal of Agronomy and Animal Industries. 2018; 13(4):336-343. doi: 10.22363/2312-797X-2018-13-4-336-343
- Bindraban PS, Dimkpa C, Nagarajan L, Roy A, Rabbinge R. Revisiting fertilizers and fertilization strategies for improved nutrient uptake by plants. Biology and Fertility of Soils. 2015; 51:897-911. doi: 10.1007/ s00374-015-1039-7
- OECD/FAO. OECD-FAO Agricultural Outlook 2021-2030. Paris, France: OECD Publishing; 2021. doi: 10.1787/19428846-en
- WFP Evaluation. WFP Evaluation Communications and Knowledge Management Strategy (2021-2026). Available from: https://docs.wfp.org/api/documents/WFP-0000128399/download/?_ga=2.267109641.664769273.1626092810-432516319.1626092810&_gac=1.224919144.1626092810.Cj0KCQjw0K-HBhDDARIsAFJ6UGiNZbBpPz4sh8mGodTBzmJiWKGy8qMHAnQyzwrrHyGgY5jLX1byW78aArdLEALw_wcB [Accessed 12 May 2022].
- FAO. Special Report- 2020 FAO/WFP Crop and Food Security Assessment Mission (CFSAM) to the Republic of South Sudan. FAO. Report number: 3/2021. doi: 10.4060/cb4498en
- Atzberger C. Advances in remote sensing of agriculture: context description, existing operational monitoring systems and major information needs. Remote Sensing. 2013; 5:949-981. doi: 10.3390/rs5020949
- Rembold F, Atzberger C, Savin I, Rojas O. Using low resolution satellite imagery for yield prediction and yield anomaly detection. Remote Sens. 2013; 5:1704-1733. doi: 10.3390/rs5041704
- Wu B, Meng J, Li Q, Yan N, Du X, Zhang M. Remote sensing-based global crop monitoring: Experiences with China’s CropWatch system. International Journal of Digital Earth. 2014; 7(2):113-137. doi: 10.1080/17538947.2013.821185.
- Ennouri K, Kallel A. Remote Sensing: An Advanced Technique for Crop Condition Assessment. Mathematical Problems in Engineering. 2019; 9404565. doi: 10.1155/2019/9404565
- Xue J, Su B. Signifi Remote Sensing Vegetation Indices: A Review of Developments and Applications. Journal of Sensors. 2017; 1353691. doi: 10.1155/2017/1353691
- Zhang Y, Chipanshi A, Daneshfar B, Koiter L, Champagne C, Davidson A, et al. Effect of using crop specific masks on earth observation based crop yield forecasting across Canada. Remote Sensing Applications: Society and Environment. 2019; 13:121-137. doi: 10.1016/j.rsase.2018.10.002
- Милосердов В.В., Беспахотный Г.В. Региональное планирование развития сельского хозяйства. М.: Экономика, 1982. 215 с.
- Полянская Н.А., Полянский М.В. Влияние климатических изменений на производство зерна в российской федерации // Современные проблемы науки и образования. 2014. № 5.
- Федеральная служба государственной статистики. Официальная статистика. Режим доступа: https://rosstat.gov.ru/folder/10705 Дата обращения: 12.05.2022.
- Earth Engine Data Catalog. FAO GAUL: Global Administrative Unit Layers 2015, Second-Level Administrative Units. Available from: https://developers.google.com/earth-engine/datasets/catalog/FAO_ GAUL_2015_level2 [Accessed 12 May 2022].
- Savin IY, Stolbovoy VS, Avetyan SA, Shishkonakova EA. Map of plowed soils of Russia. Dokuchaev Soil Bulletin. 2018; (94):38-56. doi: 10.19047/0136-1694-2018-94-38-56
- Ministry of Agriculture of the Russian Federation. Dokuchaev Soil Science Institute. Unique state registry of soil resources of Russia. Version 1.0. Collective monograph. Moscow; 2019. http://egrpr.esoil.ru Единый государственный реестр почвенных ресурсов России. Версия 1.0. Коллективная монография. Москва; 2019. http://egprr.esoil.ru
- FAO. A framework for land evaluation. FAO Soils bulletin 32. Rome: FAO; 1976.
- Иванов А.Л., Савин И.Ю., Егоров А.В. Методология оценки ресурсного потенциала земель России для сельскохозяйственного производства (на примере хмеля) // Бюллетень Почвенного института имени В.В. Докучаева. 2014. Т. 73. С. 29-94. doi: 10.19047/0136-1694-2014-73-29-94
- Основы технологии сельскохозяйственного производства. Земледелие и растениеводство / В.С. Никляев, В.С. Косинский, В.В. Ткачев, А.А. Сучилина; под ред. В.С. Никляева. М.: Былина, 2000. 555 с.
- University of Twente. Integrated Land and Water Information System (ILWIS). Available from: https://www.itc.nl/ilwis/ [Accessed 12 May 2022].
- Сарайкин В.А. Экономические и структурные изменения в сельскохозяйственном производстве России за период с 2006 по 2016 год (по данным сельскохозяйственных переписей) // Экономика сельскохозяйственных и перерабатывающих предприятий. 2021. № 1. С. 16-23. doi: 10.31442/0235-2494-2021-0-1-16-23
- Иванов А.Л., Савин И.Ю., Столбовой В.С. Ресурсный потенциал земель России для развития растениеводства // Доклады Академии наук. 2017. Т. 473. № 1. С. 346-349. doi: 10.7868/S0869565217080175
- Tolpin VA, Balashov IV, Lupyan EA, Savin IY. «VEGA» Satellite-based service. Earth from Space. 2011; (9):32-37.
- Perez-Hoyos A, Rembold F, Kerdiles H, Gallego J. Comparison of global land cover datasets for cropland monitoring. Remote Sensing. 2017; 9(11):1118. doi: 10.3390/rs9111118
- Royer A, Genovese G. (eds.) Methodology of the MARS Crop Yield Forecasting System. Vol.3. Remote Sensing Information, Data Processing and Analysis. Luxembourg: OPOCE; 2004.
- Ozdogan M. The spatial distribution of crop types from MODIS data: Temporal unmixing using Independent Component Analysis. Remote Sensing of Environment. 2010; 114(6):1190-1204. doi: 10.1016/j. rse.2010.01.006
- You L, Wood S, Wood-Sichra U. Generating plausible crop distribution maps for Sub-Saharan Africa using a spatially disaggregated data fusion and optimization approach. Agricultural Systems. 2009; 99(2-3):126-140. doi: 10.1016/j.agsy.2008.11.003
- You L, Wood S. An entropy approach to spatial disaggregation of agricultural production. Agricultural Systems. 2006; 90(1-3):329-347. doi: 10.1016/j.agsy.2006.01.008
- Савин И.Ю., Вернюк Ю.И., Исаев В.А. Оперативный спутниковый мониторинг посевов // Вестник Российской академии сельскохозяйственных наук. 2014. № 1. С. 22-23.