Microbial diversity in the cecum of broiler chickens after introduction of coumarin and feed antibiotic into the diet

Cover Page

Cite item

Abstract

In modern world, there is a need to search for alternatives to antibiotics due to the growing resistance of microorganisms. Plant extracts can be a promising replacement. Due to biological functions, they can suppress the development of various processes associated with pathogenicity and virulence, in particular, the Quorum sensing process. Based on the above, the aim of the study was to assess the bioactivity of 7,8-dihydroxy-4- methylcoumarin and 20% chlortetracycline in relation to the microbial diversity of the cecum of broiler chickens. 4 groups of broiler chickens were formed for the experiment. The control group received a diet without additives (basic diet (BD)); group I - BD + 20% chlortetracycline, at the dosage 0.63 g/kg bw per day, group II - BD + 7,8-dihydroxy-4-methylcoumarin at a dose of 9.0 mcg/ kg bw per day; Group III - BD + 7,8-dihydroxy-4-methylcoumarin + 20% chlortetracycline. The NGS of the 16S rRNA gene was used as a research method. Analysis of the results showed that addition of coumarin, the antibiotic and their combination to the poultry diet had an impact on formation of the microbial composition of intestine. Moreover, there was a decrease in the number of Lactobacillaceae , Lachnospiraceae and Erysipelotrichaceae families. In addition, the proportion of opportunistic Streptococcus flora decreased more than by 10 %.

Full Text

Characterization of the diversity of microbial communities in cecum of broiler chickens

Group

Number of reads

ОТU

Number of phyla

Control

29923

326

4

I

19540

293

5

II

22824

291

5

III

24740

323

5

 

Microbiome of cecum of broiler chickens at the level of phylum (A), families (B) and genera (C)

×

About the authors

Galimzhan K. Duskaev

Federal Research Centre of Biological Systems and Agrotechnologies of the RAS

Author for correspondence.
Email: gduskaev@mail.ru
ORCID iD: 0000-0002-9015-8367

Doctor of Biology, Leading Researcher, Department of Feeding Agricultural Animals and Feed Technology, Deputy Director

29 9 Yanvarya st., Orenburg, 460000, Russian Federation

Kristina S. Lazebnik

Federal Research Centre of Biological Systems and Agrotechnologies of the RAS

Email: christinakondrashova94@yandex.ru
ORCID iD: 0000-0003-4907-9656

Junior Researcher, Laboratory of Molecular Genetic Research in Animal Husbandry

29 9 Yanvarya st., Orenburg, 460000, Russian Federation

Tatyana A. Klimova

Federal Research Centre of Biological Systems and Agrotechnologies of the RAS

Email: klimovat91@mail.ru
ORCID iD: 0000-0003-4298-1663

Researcher, Laboratory of Microbiology

29 9 Yanvarya st., Orenburg, 460000, Russian Federation

References

  1. Cegelski L, Marshall GR, Eldridge GR, Hultgren SJ. The biology and future prospects of antivirulence therapies. Nat Rev Microbiol. 2008;6(1):17-27. doi: 10.1038/nrmicro1818
  2. Cooper MA, Shlaes D. Fix the antibiotics pipeline. Nature. 2011;472:32. doi: 10.1038/472032a
  3. LaSarre B, Federle MJ. Exploiting quorum sensing to confuse bacterial pathogens. Microbiol Mol Biol Rev. 2013;77(1):73-111. doi: 10.1128/Mmbr.00046-12
  4. De la Fuente-Núñez C, Korolik V, Bains M, Nguyen U, Breidenstein EBM, Horsman S, Lewenza S, Burrows L, Hancock RE. Inhibition of bacterial biofilm formation and swarming motility by a small synthetic cationic peptide. Antimicrobial Agents and Chemotherapy. 2012;56(5):2696-2704. doi: 10.1128/AAC.00064-12
  5. Reen FJ, Gutiérrez-Barranquero JA, Parages ML, O’Gara F. Coumarin: a novel player in microbial quorum sensing and biofilm formation inhibition. Appl Microbiol Biotechnol. 2018;102:2063-2073. doi: 10.1007/s00253-018-8787-x
  6. Zhu N, Wang J, Yu L, Zhang Q, Chen K, Liu B. Modulation of growth performance and intestinal microbiota in chickens fed plant extracts or virginiamycin. Front Microbiol. 2019;10:1333. doi: 10.3389/fmicb.2019.01333
  7. Rudenko PA, Vatnikov YA, Rudenko AA, Rudenko VB. Epizootic analysis of livestock farms disadvantaged by factor infections. Scientific life. 2020;15(4):572-585. (In Russ.). doi: 10.35679/1991-9476-2020-15-4-572-585
  8. Vatnikov Y, Shabunin S, Kulikov E, Karamyan A, Lenchenko E, Sachivkina N, Lenchenko E, Karamyan A, Kulikov E, Shabunin S. Effectiveness of biologically active substances from Hypericum perforatum L. in the complex treatment of purulent wounds. International Journal of Pharmaceutical Research. 2020;12(4):1108-1117. doi: 10.31838/19ijpr/2020.12.04.078
  9. Wong SYY, Grant IR, Friedman M, Elliott CT, Situ C. Antibacterial activities of naturally occurring compounds against Mycobacterium avium subsp. paratuberculosis. Appl Environ Microbiol. 2008;74(19):5986- 5990. doi: 10.1128/AEM.00981-08
  10. Al-Majedy YK, Al-Duhaidahawi DL, Al-Azawi KF, Al-Amiery AA, Kadhum AAH, Mohamad AB. Coumarins as potential antioxidant agents complemented with suggested mechanisms and approved by molecular modeling studies. Molecules. 2016;21(2):135. doi: 10.3390/molecule
  11. D’Almeida RE, Molina RDI, Viola CM, Luciardi MC, Nieto Peñalver C, Bardon A, Arena ME. Comparison of seven structurally related coumarins on the inhibition of Quorum sensing of Pseudomonas aeruginosa and Chromobacterium violaceum. Bioorg Chem. 2017;73:37-42. doi: 10.1016/j.bioorg.2017.05.011
  12. Yang L, Ding W, Xu Y, Wu D, Li S, Chen J, Guo B. New Insights into the Antibacterial Activity of Hydroxycoumarins against Ralstonia solanacearum. Molecules. 2016; 21(4):468. doi: 10.3390/molecules21040468
  13. Deryabin D, Inchagova K, Rusakova E, Duskaev G. Coumarin’s anti-quorum sensing activity can be enhanced when combined with other plant-derived small molecules. Molecules. 2021;26(1):208. doi: 10.3390/molecules26010208
  14. Stanley D, Denman SE, Hughes RJ, Geier MS, Crowley TM, Chen H, Haring VR, Moore RJ. Intestinal microbiota associated with differential feed conversion efficiency in chickens. Appl Microbiol Biotechnol. 2012;96:1361-1369. doi: 10.1007/s00253-011-3847-5
  15. Videnska P, Faldynova M, Juricova H, Babak V, Sisak F, Havlickova H, Rychlik I. Chicken faecal microbiota and disturbances induced by single or repeated therapy with tetracycline and streptomycin. BMC Vet Res. 2013;9:30. doi: 10.1186/1746-6148-9-30
  16. Turnbaugh PJ, Ley RE, Mahowald MA, Vincent M, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027-1031. doi: 10.1038/nature05414
  17. Torok VA, Allison GE, Percy NJ, Ophel-Keller K, Hughes RJ. Influence of antimicrobial feed additives on broiler commensal posthatch gut microbiota development and performance. Appl Environ Microbiol. 2011;77:3380-3390. doi: 10.1128/AEM.02300-10
  18. Thiennimitr P, Winter SE, Winter MG, Xavier MN, Tolstikov V, Huseby DL, Sterzenbach T, Tsolis RM, Roth JR, Bäumler AJ. Intestinal inflammation allows Salmonella to use ethanolamine to compete with the microbiota. PNAS. 2011;108(42):17480-17485. doi: 10.1073/pnas.1107857108
  19. Winter SE, Thiennimitr P, Winter MG, Butler BP, Huseby DL, Crawford RW, Russell JM, Bevins CL, Adams LG, Tsolis RM, Roth JR, Bäumler AJ. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature. 2010;467:426-429. doi: 10.1038/nature09415
  20. Medvecky M, Cejkova D, Polansky O, Karasova D, Kubasova T, Cizek A, Rychlik I. Whole genome sequencing and function prediction of 133 gut anaerobes isolated from chicken caecum in pure cultures. BMC Genomics. 2018;19(1):561. doi: 10.1186/s12864-018-4959-4
  21. Yang Q, Liang Q, Balakrishnan B, Belobrajdic DP, Feng QJ, Zhang W. Role of Dietary Nutrients in the Modulation of Gut Microbiota: A Narrative Review. Nutrients. 2020;12(2):381. doi: 10.3390/nu12020381
  22. Zackular JP, Baxter NT, Iverson KD, Sadler WD, Petrosino JF, Chen GY, Schloss PD. The gut microbiome modulates colon tumorigenesis. mBio. 2013;4(6): e00692-13. doi: 10.1128/mBio.00692-13
  23. Olnood CG, Beski SSM, Choct M, Iji PA. Novel probiotics: their effects on growth performance, gut development, microbial community and activity of broiler chickens. Animal Nutrition. 2015;1(3):184-191. doi: 10.1016/j.aninu.2015.07.003.43
  24. Vatnikov Y, Shabunin S, Karamyan A, Kulikov E, Sachivkina N., Stepanishin V, Vasilieva E, Bobkova N, Lucay V, Avdotin V, Zenchenkova A, Rudenko P, Rudenko A. Antimicrobial activity of Hypericum perforatum L. International Journal of Pharmaceutical Research. 2020;12(Suppl.1):723-730. doi: 10.31838/ijpr/2020.SP1.113
  25. Videnska P, Sedlar K, Lukac M, Faldynova M, Gerzova L, Cejkova D, Sisak F, Rychlik I. Succession and replacement of bacterial populations in the caecum of egg laying hens over their whole life. PLoS One. 2014;9(12):e115142. doi: 10.1371/journal.pone.0115142
  26. Grozina AA. Gut microbiota of broiler chickens influenced by probiotics and antibiotics as revealed by T-RFLP and RT-PCR. Agricultural biology. 2014;49(6):46-58. (In Russ.). doi: 10.15389/agrobiology.2014.6.46eng
  27. Yu M, Mu C, Zhang C, Yang Y, Su Y, Zhu W. Marked response in microbial community and metabolism in the ileum and cecum of suckling piglets after early antibiotics exposure. Front Microbiol. 2018;9:1166. doi: 10.3389/fmicb.2018.01166
  28. Mancabelli L, Ferrario C, Milani C, Mangifesta M, Turroni F, Duranti S, Lugli GA, Viappiani A, Ossiprandi MC, van Sinderen D, Ventura M. Insights into the biodiversity of the gut microbiota of broiler chickens. Environ Microbiol. 2016;18(12):4727-4738. doi: 10.1111/1462-2920.13363
  29. Ilyina, LA, Yildirim, EA, Nikonov IN, Filippova VA, Laptev GY, Novikova NI, Grozina A.A., Lenkova T.N., Manukyan V.A., Fisinin V.I., Egorovet I.A. Taxons of chicken cecum microbiom are abundant, and influenced by the combined feed composition and decreased metabolizable energy. Agricultural biology. 2015;50(6):817-824. (In Russ.). doi: 10.15389/agrobiology.2015.6.817rus
  30. Rychlik I. Composition and Function of Chicken Gut Microbiota. Animals. 2020;10(1):103. doi: 10.3390/ani10010103
  31. Duskaev G, Kvan O, Kosyan D, Rakhmatullin S, Levakhin G. Coumarin derivative and Bacillus cereus change live weight and cecal ecology in broilers. AIMS Agriculture and Food. 2021;6(1):360-380. doi: 10.3934/ agrfood.2021022

Supplementary files

Supplementary Files
Action
1. Microbiome of cecum of broiler chickens at the level of phylum (A), families (B) and genera (C)

Download (110KB)

Copyright (c) 2022 Duskaev G.K., Lazebnik K.S., Klimova T.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies