Effect of forecrop on yield of spring durum wheat and soil potassium in chernozems of southern steppe zone in Southern Urals during long-term research

Cover Page

Cite item

Abstract

The goal of the study was to determine the infl nce of forecrops on spring durum wheat productivity and content of soil potassium in monoculture, double-cropping and six-year crop rotation at two types of nutrient statuses. The information obtained as a result of long-term experiments is of great interest, since systematic determination of nutrient elements in soil gives a correct assessment of the effect of the longterm use of fertilizers on soil fertility. Content of available forms of potassium in soil under spring durum wheat depending on different forecrops and nutrient statuses was studied. The best forecrops for durum wheat in 31-year experiments were black, soil-protecting and green fallows. The yield of durum wheat after black fallow was 1.20 t/ha under fertilization and 1.27 t/ha without using fertilizers. Vegetative mass of cropped fallow ploughed into soil and use of mineral fertilizers led to an increase in content of soil potassium. The use of mineral fertilizers has a positive effect on yield of durum wheat; the yield increase was 0.10 t/ha after soil protecting fallow, 0.11 t/ha after common wheat and 0.13 t/ha after winter rye. Content of soil potassium was higher in six-year crop rotation and it increased durum wheat productivity compared to double-cropping and monoculture.

Full Text

Table 1. Effect of nutrient status and hydrothermal coefficient (HC) on yield of spring durum wheat (on average for all forecrops)

Characteristics of the growing season

Year of experiment

Hydrothermal coefficient

Average yield, t/ha

Under

fertilization

Without fertilization

I — slightly arid (HC = 0.8 and more)

1990

1992

1994

1997

2000

2003

2013

0.99

0.89

1.29

0.96

1.51

1.09

0.82

3.23

1.22

3.76

1.99

1.38

1.94

0.94

2.99

1.17

3.50

2.00

1.26

1.77

0.72

II —arid (HC = 0.6…0.8)

1993

1999

2006

2007

2008

2019

0.76

0.61

0.63

0.75

0.70

0.65

3.80

1.22 0

0.83

1.37

0.45

3.39

1.10 0

0.76

1.16

0.44

III — extremely arid (HC = 0.6 and less)

1991

1995

1996

1998

2001

2002

2004

2005

2009

2010

2011

2012

2014

2015

2016

2017

2018

2020

0.29

0.27

0.38

0.19

0.38

0.46

0.50

0.44

0.56

0.15

0.59

0.34

0.24

0.57

0.33

0.46

0.34

0.30

1.07

0.54

1.35

0.15

1.02

0.87

0.87 0

1.26 0

1.43

0.80

0.09 0

0.54

1.58

0.37

0.80

1.13

0.46

1.16

0.15

0.97

0.80

0.76 0

1.26 0

1.22

0.71

0.11 0

0.21

1.64

0.37

0.77

 

 

Fig. 1. Effect of hydrothermal coefficient (HC) of the growing season on yield of spring durum wheat depending on nutrient status in 1990—2020

 

Table 2. Effect of hydrothermal coefficient of the growing season on yield  of spring durum wheat depending on nutrient status in 1990—2020

Nutrient status

№=25

Beta

Std Err

В

Std Err

t(23)

Р-level

Fertilized

Intercept

 

 

0.0818

0.3378

0.2422

0.8108

HC for growing season

0.6489

0.1586

1.9859

0.4855

4.0905

0.0004

R = 0.64 F(1.23) =16.73 Р < 0.0004

Unfertilized

Intercept

 

 

0.1169

0.2882

0.4055

0.6888

HC for growing season

0.6466

0.1590

1.6844

0.4143

4.0651

0.0004

R = 0.65 F(1.23) = 16.52 Р < 0.0004

Table 3. Effect of forecrop and nutrient status on potassium content in soil and yield of spring durum wheat (1990—2020)

Indicators

Nutrient status

Forecrop

Yield

t/ha

I

1,20

1,27

1,26

1,26

1,00

1,05

0,87

II

1,07

1,20

1,16

1,21

0,89

0,99

0,79

difference + or –

+0,13

+0,07

+0,10

+0,05

+0,11

+0,06

+0,08

LSD05 by factors

А

0,47

0,47

0,47

0,45

0,39

0,41

0,34

В

0,40

0,47

0,45

0,46

0,34

0,38

0,30

А+В

0,11

0,10

0,08

0,06

0,09

0,11

0,08

Potassium content in soilEarly in growing season

mg/100 g soil

I

46,8

44,6

43,9

44,4

39,8

39,7

39,8

II

43,1

42,2

41,3

42,3

39,5

37,6

38,3

difference + or –

+3,7

+2,4

+2,6

+2,1

+0,3

+2,1

+1,5

LSD05 by factors

А

2,72

2,93

3,00

3,09

2,35

2,01

2,52

В

2,68

3,31

3,54

3,37

2,36

2,13

2,24

А+В

2,31

2,21

2,11

2,36

1,65

1,42

1,89

Late in growing season

mg/100 g soil

I

44,1

44,4

43,3

40,4

36,7

35,2

35,7

II

40,7

39,6

39,8

38,3

34,7

34,8

35,0

difference + or –

+3,4

+4,8

+3,5

+2,1

+2,0

+0,4

+0,7

LSD05 by factors

А

2,80

3,46

3,62

2,52

2,41

2,33

2,38

В

3,38

2,72

2,99

2,54

2,15

2,46

2,47

А+В

2,02

2,34

2,40

2,12

1,83

2,01

2,20

Potassium absorbed during the growing season

I

2,7

0,2

0,6

4,0

3,1

4,5

4,1

II

2,4

2,6

1,5

4,0

4,8

2,8

3,3

Note. I — Under fertilization; II — Without fertilization

×

About the authors

Vitaly Yu. Skorokhodov

Federal Scientific Center for Biological Systems and Agrotechnologies of the Russian Academy of Sciences

Author for correspondence.
Email: skorohodov.vitali1975@mail.ru
ORCID iD: 0000-0003-4179-7784

Candidate of Agricultural Sciences, Leading Researcher, Department of Agriculture and Resource-Saving Technologies

27/1 Gagarina Avenue, Orenburg, 460051, Russian Federation

References

  1. Lukin SV, Vasenev II, Cigutkin AS. Agroecological evaluation of exchangeable potassium long-term dynamics in chernozems at the western part of Central Chernozemic region of Russia. Achievements of Science and Technology in Agro-Industrial Complex. 2010; (8):42—46. (In Russ.).
  2. Barshadskaya SI, Kvashin AA, Dereka VI. Fertility of ordinary chernozem and the yielding capacity of the main agricultural crops. Plodorodie. 2011; (2):36—39. (In Russ.).
  3. Lazarev VI, Lazareva RI, Ilyin BS, Boeva NN. Potash regime in typical chernozem under its longterm agricultural use in different agroecosystems. Agrohimia. 2020; (2):14—19. (In Russ.). doi: 10.31857/ S000218812002009X
  4. Brekhov PT, Myazin NG. Potassium forms on typical chernozem while long-term application of fertilizers. Agrochemical Herald. 2012; (4):5—7. (In Russ.).
  5. Chekmarev PA, Lukin SV, Siskevich YI, Yumashev NP, Korchagin VI, Khizhnyakov AN. Monitoring of potassium regime of chernozems in Central Black Earth Region. Achievements of Science and Technology in Agro-Industrial Complex. 2011; (8):3—6. (In Russ.).
  6. Gamzikov GP. Soil supply with potassium and the effectiveness of potash fertilizers in agriculture in Siberia. In: Ecological and agrochemical assessment of the state of the potassium regime of soils and the effectiveness of potash fertilizers: conference proceedings. Moscow: TsINAO publ.; 2002. p.85—94. (In Russ.).
  7. Kononchuk VV, Nikitina LV. The influence of the systematic application of fertilizers on the potassium balance and some indicators of the potassium regime of light chestnut soil during irrigation. Agrohimia. 2002; (6):53—58. (In Russ.).
  8. Lukin SM. Potassium status and budget in sandy loamy soddy-podsolic soil under long-term fertilization. Agrohimia. 2012; (12):5—14. (In Russ.).
  9. Shustikova EP, Shapovalova NN. Change in potash regime of ordinary chernozem under the influence of the systematic application of mineral fertilizers. Agrochemical Herald. 2012; (2):5—7. (In Russ.).
  10. Prokoshev VV, Deryugin IP. Kalii i kaliinye udobreniya [Potassium and potash fertilizers]. Moscow: Ledum publ.; 2000. (In Russ.).
  11. Shafronov OD, Bolshova NA. Potassium content in soils of the Nizhny Novgorod region and the use of potash fertilizers. Plodorodie. 2002; (2):8—9. (In Russ.).
  12. Murrell TS. Do I need to use potash fertilizers? Bulletin of the International Plant Nutrition Institute. 2014; (4):2—4. (In Russ.).
  13. Skorokhodov VY. Accumulation and use of K2O by spring wheat and winter rye on south chernozems of the Orenburg Preduralye in the spring-summer period. Izvestia Orenburg state agrarian university. 2019; (6):64—69. (In Russ.).
  14. Besaliev IN, Kryuchkov AG. Provision of spring durum wheat with nitrogen in conformity with agrotechnics and its yielding capacity. Izvestia Orenburg state agrarian university. 2016; (5):27—30. (In Russ.).
  15. Besaliev IN, Tukhfatullin MF. The yielding capacity of hard wheat varieties as dependent on soil cultivation practices. Izvestia Orenburg state agrarian university. 2009; (1):22—23. (In Russ.).
  16. Sandakova GN. Prospects of hard wheat growing on the virgin lands of the Ural zone of Orenburg region. Izvestia Orenburg state agrarian university. 2004; (1):30—31. (In Russ.).
  17. Skorokhodov VY. The level of soil biological activity and the content of nitrate nitrogen in soils under spring durum wheat as an aftereffect of coulisse fallow on southern chernozem lands of Orenburg Priuralye. Izvestia Orenburg state agrarian university. 2020; (3):51—56. (In Russ.). doi: 10.37670/2073-0853-2020-83-3-51-57
  18. Nikitina LV. Effect and aftereffect of different fertilizing systems in a long-term field experiment on the potassium status in clay loamy soddy-podzolic soil. Plodorodie. 2015; (6):5—7. (In Russ.).

Supplementary files

Supplementary Files
Action
1. Fig. 1. Effect of hydrothermal coefficient (HC) of the growing season on yield of spring durum wheat depending on nutrient status in 1990—2020

Download (69KB)

Copyright (c) 2021 Skorokhodov V.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies