Screening of blast resistance genes in rice breeding samples
- Authors: Vozhzhova N.N.1, Zhogaleva O.S.1, Kupreyshvili N.T.1, Dubina A.Y.1, Kostylev P.I.1
-
Affiliations:
- Agrarian Science Center ‘Donskoy’
- Issue: Vol 16, No 4 (2021)
- Pages: 326-336
- Section: Plant protection
- URL: https://agrojournal.rudn.ru/agronomy/article/view/19700
- DOI: https://doi.org/10.22363/2312-797X-2021-16-4-326-336
Cite item
Full Text
Abstract
Rice is one of the most widespread and cultivated crops in the world. It is necessary to increase the yield of crops or expand their sown areas to resolve a food security problem in Russia. Current impossibility of expanding rice cultivated areas in the Rostov region and the need to maintain and increase its yield require developing new disease-resistant varieties. Rice genotypes with multiple blast resistance genes avoid significant yield losses. Since pyramiding and selection of resistance genes in the same genotype through traditional selection methods are complicated, it is urgent to search for homozygous samples using marker-assisted selection methods. This study was aimed to identify Pi-1, Pi-2, Pi-33 and Pi-ta blast resistance genes in breeding rice samples by MAS-methods. The study used CTAB-method for DNA-isolation, PCR, electrophoresis on agarose and polyacrylamide gels. The resulting gels were stained in a solution of ethidium bromide and photographed in ultraviolet light. To control the presence of blast resistance genes the following parental cultivars were used: C104LAC for the Pi-1 and Pi-33 genes, C101-A-51 for the Pi-2 gene, IR36 for the Pi-ta gene; Novator and Boyarin as controls of non-functional alleles of all studied genes. The 446 selection samples of the seventh generation were analyzed. As a result of the research, 127 rice samples that combine 2 or 3 different blast resistance genes were identified. The Pi-2 and Pi-33 genes combination was identified in 43 samples (1128/1, 1149/3, 1171/2, 1177/3, 1177/4, 1186/4, et al.). Samples with three resistance genes are the most interesting for selection and further breeding. For developing new blast-resistant varieties, we recommend using rice samples with the following combinations of resistance genes Pi-1+Pi-2+Pi-33 (1197/1, 1226/2, 1271/1, 1272/2), Pi-1+Pi-2+Pi-ta (1197/4, 1304/2, 1304/3, 1482/3, 1482/4, 1486/1) and Pi-2+Pi-33+Pi-ta (1064/1, 1064/3, 1281/2, 1281/3, 1281/4, 1282/2, 1283/1, 1283/2, 1284/3).
Keywords
Full Text
Fig. 1. Electropherogram of screening rice samples for the presence of the Pi-ta blast resistance gene on agarose gel: 1 — Thermo Scientific GeneRuler molecular weight marker 50 bp (50—1000 bp); 2 — deionized H2O (negative control); 3 — IR36 (positive control); 4 — D7787/1; 5 — D7787/2; 6 — D7787/3; 7 — D7787/4; 8 — D7787/5; 9 — D7787/6; 10 — D7787/7; 11 — D7787/8; 12 — D7787/9; 13 — D7787/10; 14—1064/1; 15—1064/2; 16—1064/3; 17—1064/4; 18—1065/1
Fig. 2. Electropherogram of screening rice samples for the presence of blast resistance gene Pi-1 on a polyacrylamide gel: 1 — DNA marker 50+ bp DNA Ladder Evrogen (50—700 bp); 2 — C104-LAC (positive control); 3 — D7787/1; 4 — D7787/2; 5 — D7787/3; 6 — D7787/4; 7 — D7787/5; 8 — D7787/6; 9 — D7787/7; 10 — D7787 / 8; 11 — D7787/9; 12 — D7787/10; 13—1141/1; 14—1141/2; 15—1141/3
Table 1. Distribution of alleles of Pi-1, Pi-2, Pi-33 and Pi-ta genes in breeding rice samples
Alleles of the gene | Number of samples carrying the alleles of the gene | |||
Pi-1 | Pi-2 | Pi-33 | Pi-ta | |
Functional homozygous (dominant) | 54 | 136 | 192 | 131 |
Heterozygous | 1 | 5 | 16 | 6 |
Non-functional homozygous (recessive) | 204 | 285 | 121 | 285 |
Allele was not identified | 247 | 80 | 177 | 24 |
Fig. 3. Distribution of rice samples by the number of combined blast resistance genes
Table 2. Identified rice samples having multiple blast resistance genes
Combination of resistance genes | Number of samples | Name of samples |
Pi1+2 | 5 | 1270/4, 1271/2, 1293/3, 1318/3, 1371/1 |
Pi1+33 | 12 | 1231/4, 1263/3, 1268/3, 1277/1, 1277/2, 1277/3, 1322/1, 1323/1, 1323/2, 1323/3, 1323/4, 1457/2 |
Pi1+ta | 9 | 1141/1, 1304/4, 1468/1, 1468/2, 1476/1, 1476/2, 1486/2, 1486/3, 1486/4 |
Pi2+33 | 43 | 1128/1, 1149/3, 1171/2, 1177/3, 1177/4, 1186/4 et al. |
Pi2+ta | 22 | 1064/2, 1064/4, 1135/4, 1141/3, 1141/4, 1151/1 et al. |
Pi33+ta | 16 | 1065/2, 1242/2, 1242/3, 1242/4, 1281/1, 1281/3, 1281/4 et al. |
Pi33+b | 1 | 1127/2 |
Pi1+2+33 | 4 | 1197/1, 1226/2, 1271/1, 1272/2 |
Pi1+2+ta | 6 | 1197/4, 1304/2, 1304/3, 1482/3, 1482/4, 1486/1 |
Pi2+Pi33+Pi-ta | 9 | 1064/1, 1064/3, 1281/2, 1281/3, 1281/4, 1282/2, 1283/1, 1283/2, 1284/3 |
About the authors
Nataliya N. Vozhzhova
Agrarian Science Center ‘Donskoy’
Author for correspondence.
Email: nvozhzh@gmail.com
ORCID iD: 0000-0002-2046-4000
Candidate of Agricultural Sciences, senior researcher, Laboratory of marker selection
3 Nauchny gorodok st., Zernograd, Rostov Region, 347740, Russian FederationOlga S. Zhogaleva
Agrarian Science Center ‘Donskoy’
Email: os.zogaleva@mail.ru
ORCID iD: 0000-0003-1477-3285
junior researcher, Laboratory of Marker Selection
3 Nauchny gorodok st., Zernograd, Rostov Region, 347740, Russian FederationNatia T. Kupreyshvili
Agrarian Science Center ‘Donskoy’
Email: kupreyshvilin@mail.ru
ORCID iD: 0000-0002-1726-4390
research technician, Laboratory of Marker Selection
3 Nauchny gorodok st., Zernograd, Rostov Region, 347740, Russian FederationAngelina Y. Dubina
Agrarian Science Center ‘Donskoy’
Email: angel.myshastaja@yandex.ru
ORCID iD: 0000-0002-1432-7616
research technician, Laboratory of Marker Selection
3 Nauchny gorodok st., Zernograd, Rostov Region, 347740, Russian FederationPavel I. Kostylev
Agrarian Science Center ‘Donskoy’
Email: p-kostylev@mail.ru
ORCID iD: 0000-0002-4371-6848
Doctor of Agricultural Sciences, Head
3 Nauchny gorodok st., Zernograd, Rostov Region, 347740, Russian FederationReferences
- Wang F, Wang F, Hu J, Xie L, Yao X. Rice yield estimation based on an NPP model with a changing harvest index. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2020; 13:2953—2959. doi: 10.1109/JSTARS.2020.2993905
- Asibi AE, Chai Q, Coulter JA. Rice Blast: a disease with implications for global food security. Agronomy. 2019; 9(8):451. doi: 10.3390/agronomy9080451
- Yulensri Y. Efektifitas Formulasi Cair Konsorsium Bakteri sebagai Pengendali Hama dan Penyakit pada Padi Sawah Organik. Jurnal Ilmiah Inovasi. 2020; 20(3):35—40. doi: 10.25047/jii.v20i3.2366
- El-Abbasi IH, Khalil AA, Awad HM, Shoala T. Nano-diagnostic technique for detection of rice pathogenic fungus Pyricularia oryzae. Indian Phytopathology. 2020; 73:673—682. doi: 10.1007/s42360-020-00254-7
- Hannum S, Hasibuan U, Sinaga R, Wahyuningsih H. Identification of blast resistance genes in fifteen rice accessions (Oryza sativa L.) from North-Sumatera. In: IOP Conference Series: Earth and Environmental Science. Volume 305. IOP Publishing; 2019. p.012076. doi: 10.1088/1755-1315/305/1/012076
- Nickolas H, Jayalekshmy VG, Yamini Varma CK, Vighneswaran V. Molecular and field level screening for blast resistance gene donors among traditional rice varieties of Kerala. Journal of Tropical Agriculture. 2018; 56(2):93—98.
- Pandian BA, Joel J, Nachimuthu VV, Swaminathan M, Govintharaj P, Tannidi S, Sabariappan R. Markeraided selection and validation of various Pi gene combinations for rice blast resistance in elite rice variety ADT43. Journal of Genetics. 2018; 97(4):945—952. doi: 10/1007/s12041-018-0988-7
- Guan H, Hou X, Jiang Y, Srivastava V, Mao D, Pan R, et al. Feature of blast resistant near-isogenic lines using an elite maintainer line II-32B by marker-assisted selection. Journal of Plant Pathology. 2019; 101(3):491—501. doi: 10.1007/s42161-018-00222-1
- Correa-Victoria FJ, Tharreau D, Martinez C, Vales M, Escobar F, Prado G, et al. Gene combination for durable blast resistance in Colombia. Fitopatol. Colomb. 2002; 26: 47—54. Available from: http://ciat-library. ciat.cgiar.org/Articulos_Ciat/poster_riceblast.pdf
- Noenplab A, Vanavichit A, Toojinda T, Sirithunya P, Tragoonrung S, Sriprakhon S, et al. QTL mapping for leaf and neck blast resistance in Khao Dawk Mali105 and Jao Horn Nin recombinant inbred lines. ScienceAsia. 2006; 32(2):133—142. doi: 10.2306/scienceasia1513-1874.2006.32.133
- Jamaloddin M, Durga Rani CV, Swathi G, Anuradha C, Vanisri S, Rajan CPD, et al. Marker Assisted Gene Pyramiding (MAGP) for bacterial blight and blast resistance into mega rice variety «Tellahamsa». PLoS ONE. 2020; 15(6): e0234088. doi: 10.1371/journal.pone.0234088
- Murray MG, Thompson WF. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980; 8(19):4321—4325. doi: 10.1093/nar/8.19.4321
- Ware D, Jaiswal P, Ni J, Pan X, Chang K, Clark K, et al. Gramene: A resource for comparative grass genomics. Nucleic Acids Res. 2002; 30(1):103—105. doi: 10.1093/nar/30.1.103
- Sharma RC, Shrestha SM, Pandey MP. Inheritance of blast resistance and associated microsatellite markers in rice cultivar «Laxmi». Journal of Phytopatology. 2007; 155(11–12):749–753. doi: 10.1111/j.14390434.2007.01298.x.
- Mukhina ZМ, Myagkikh YА, Bogomaz D, Matveeva TV, Tokmakov SV. Creation of a codominant molecular PCR marker for identification of the gene of race-specific resistance to rice blast infection Pi-ta. Rice growing. 2008; (7):3—4.