Comprehensive assessment of Krascheninnikoviaceratoides L. development and its productive potential in reclaimed pastures of arid zone
- Authors: Rybashlykova L.P.1
-
Affiliations:
- Federal Scientific Centre of Agroecology, Complex Melioration and Protective Afforestation of Russian Academy of Sciences
- Issue: Vol 17, No 2 (2022)
- Pages: 166-179
- Section: Agricultural technologies and land reclamation
- URL: https://agrojournal.rudn.ru/agronomy/article/view/19763
- DOI: https://doi.org/10.22363/2312-797X-2022-17-2-166-179
Cite item
Full Text
Abstract
Improper use of pasture lands has become one of the factors resulted in destruction of natural vegetation. In order to stop desertification, forest reclamation works were carried out in the Caspian region in the mid-20th century, and significant areas of Krascheninnikovia ceratoides (L.) plantings were created. The Pamirian winterfat is a wide distributed plant. It has a well-developed root system, providing sufficient water in climatic conditions of the arid zone. The article provides a systematic assessment of the long-term impact of afforestation and the development of a subshrub layer in various humidity conditions over the growing season during the functioning of pasture ecosystems in reclaimed Molodezhny-teresken territory. The main taxation indicators used to assess the development of Krascheninnikovia ceratoides were determined: height, crown diameter, plant standing density. The research was based on field taxational and morphological measurements of the subshrub and calculations of the complex indicator D. The study revealed that the generalized analysis of the biometric parameters of Pamirian winterfat according to criterion D was an objective tool for assessing its development in the prevailing climatic factors of a certain year. A direct correlation was established between the amount of precipitation in autumn period of research years and the values of the integral indicator D (r = 0.97) with its higher value in 2012 (D = 0.905). There is a high level of direct correlation between the values of the integral indicator D and the yield of feed mass (r = 0.90). Krascheninnikovia ceratoides reclamation and forage plantations have stability, durability, high price-forming potential and are the best way to improve and restore pastures in arid and semi-arid zones.
Full Text
Fig. 1. Map-layout of «Molodezhny-Teresken» research site, Republic of Kalmykia (Satellite image SasPlanet)
Fig. 2. Molodezhny-teresken forest pasture, Black Lands, Republic of Kalmykia (30 years after establishing, 2014). Photo by L.P. Radochinskaya
Table 1. Average monthly temperature for the growing season, °C
Month | Average annual | 2011—2012 | 2013—2014 | 2015—2016 |
Autumn period | ||||
September | +17.6 | +18.0 | +16.4 | +21.4 |
October | +9.5 | +10.0 | +9.1 | +7.8 |
November | +3.0 | –1.9 | +5.6 | + 0.4 |
Sum of temperatures | 30.1 | 26.1 | 31.1 | 29.6 |
Spring-summer period | ||||
March | +1.0 | +0.5 | +4.3 | +5.3 |
April | +10.7 | +15.5 | +10.7 | +13.3 |
May | +18.0 | +22.1 | +21.7 | +18.4 |
June | +22.9 | +25.8 | +24.5 | +23.9 |
July | +25.5 | +26.8 | +26.9 | +26.5 |
August | +24.0 | +25.9 | +28.3 | +28.2 |
Sum of temperatures | 102.1 | 116.6 | 116.4 | 115.6 |
Table 2. Average monthly precipitation during the growing season, mm
Month | Average annual | 2011—2012 | 2013—2014 | 2015—2016 |
Autumn period | ||||
September | 25 | 83 | 98 | 32 |
October | 17 | 41 | 12 | 22 |
November | 20 | 31 | 16 | 6 |
Precipitation total | 62 | 155 | 126 | 60 |
Spring-summer period | ||||
March | 15 | 14 | 29 | 12 |
April | 14 | 14 | 4 | 7 |
May | 32 | 1,3 | 25 | 93 |
June | 28 | 75 | 21 | 31 |
July | 26 | 35 | 1 | 43 |
August | 27 | 36 | 5 | 7 |
Precipitation total | 142 | 175.3 | 85 | 193 |
Table 3. Expert assessment of Pamirian winterfat ki indicators
Expert | Indicator | ||
у1 | у2 | у3 | |
1 | 3/0.2* | 1/0.5 | 2/0.3 |
2 | 3/0.2 | 1.5/0.4 | 1.5/0.4 |
3 | 3/0.2 | 2/0.3 | 1/0.5 |
4 | 2.5/0.3 | 2.5/0.3 | 1/0.4 |
5 | 1/0.45 | 2/0.4 | 3/0.15 |
6 | 3/0.3 | 1.5/0.35 | 1.5/0.35 |
7 | 1/0.4 | 2.5/0.3 | 2.5/0.3 |
Weightiness ki | 0.293 | 0.364 | 0.343 |
Sum of ranks | 16.5 | 13 | 12.5 |
Deviation from the average sum of ranks | 2.5 | –1 | –1.5 |
Deviation squares | 6.25 | 1 | 2.25 |
*In numerator — rank of tj indicator; in denominator — weight of ki indicator.
Table 4. Desirability levels for accepted indicators of Pamirian winterfat development
Indicators | Designation | Desirability d | ||||
1.0 | 0.8 | 0.63 | 0.37 | 0.2 | ||
Height, cm | у1 | 81.0—68.4 | 68.4—55.8 | 55.8—43.2 | 43.2—30.6 | 30.6—18.0 |
Crown diameter, cm | у2 | 80—68.6 | 68.6—57.2 | 57.2—45.8 | 45.8—34.3 | 34.3—23.0 |
Density of plant standing, thousand plants/ha | у3 | 19.1—17.7 | 17.7—16.3 | 16.3—14.8 | 14.8—13.4 | 13.4—12.0 |
Table 5. di = аyi + с dependence for various indicators
Indicator | Designation | Equation |
Height, cm | у1 | d1 = 0.0161y1—0.1975 |
Crown diameter, cm | у2 | d2 = 0.0178y2—0.3156 |
Density of plant standing, thousand plants/ha | у3 | d3 = 0.1419y3—1.605 |
Table 6. Integral criterion D of Pamirian winterfat development
Year | Height, cm (у1/d1) | Crown diameter, cm (у2/d2) | Density of plant standing, thousand plants/ha (у3/d3) | D |
2012 | 71/0.94 | 42/0.43 | 19.0/1.08 | 0.905 |
2014 | 50/0.60 | 43/0.44 | 16.8/0.77 | 0.836 |
2016 | 44/0.51 | 33/0.27 | 16.3/0.70 | 0.767 |
Table 7. Pamirian winterfat productivity in plantings (Yashkul district, Republic of Kalmykia (Black Lands))
Location | Year | Number of survived plants per 1 ha | Feed mass, g | Dry weight, c/ha | |
Wet | Dry | ||||
Molodezhny-teresken | 2012 | 19.0±1.6 | 82.57 | 32.00 | 6.08±1.7 |
2014 | 16.8±0.8 | 84.12 | 33.48 | 5.62±2.1 | |
2016 | 16.3±1.2 | 80.00 | 30.50 | 4.97±1.4 |
About the authors
Ludmila P. Rybashlykova
Federal Scientific Centre of Agroecology, Complex Melioration and Protective Afforestation of Russian Academy of Sciences
Author for correspondence.
Email: ludda4ka@mail.ru
ORCID iD: 0000-0002-3675-6243
Candidate of Agricultural Sciences, Leading researcher, Laboratory of protective afforestation and phytomelioration of low-yielding lands
97 Universitetsky av., Volgograd, 400062, Russian FederationReferences
- Tyutyuma NV, Bulakhtina GK, Kudryashov AV, Kudryashova NV. Meliorative efficiency of shrub coulisses in arid pastures of Southern Russia. Arid ecosystems. 2020;26(1):62—68. (In Russ.) doi: 10.24411/19933916-2020-10084
- Ibragimov KM, Gamidov IR, Umakhanov MA. Increasing the productivity of degraded grassland of Kizlyar pastures. Fodder Production. 2017;(8):18—21. (In Russ.)
- Dedova EB, Goldvarg BA, Tsagan-Manzhiev NL. Land degradation of the republic of Kalmykia: problems and ways to recover. Arid ecosystems. 2020;26(2):63—71. (In Russ.) doi: 10.24411/1993-3916-2020-10097
- Manaenkov AS, Kulik AK. Zakreplenie i oblesenie peskov zasushlivoi zony [Consolidation and afforestation of dry zone sands]. Volgograd; 2016. (In Russ.)
- Kryuchkov SN, Mattis GY. Lesorazvedenie v zasushlivykh usloviyah [Afforestation in arid conditions]. Volgograd: VNIALMI publ.; 2014. (In Russ.)
- Shamsutdinov NZ, Kaminov YB, Batyrov VA. Biological characteristics and fodder productivity of dwarf semishrubs in the conditions of the Circum-caspian semi-deserts. Advances in current natural sciences. 2019;(7):39—44. (In Russ.) doi: 10.17513/use.37157
- Rybashlykova LP, Lepesko VV. Assessment of natural and forest reclaimed forage lands in semi-desert conditions in southern Russia. Russian forestry journal. 2021;(3):37—48. doi: 10.37482/0536-1036-2021-3-37-48
- Komarova IA, Ivantsova EA. Geoinformation assessment of agro-landscapes at the test range ‘Black Lands’. Proceedings of Lower Volga agro-university complex: science and higher education. 2021;(1):452—460. (In Russ.) doi: 10.32786/2071-9485-2021-01-43
- Mitroshenkova AE. Shrubby steppes of Samara High trans-Volga region. Vestnik of Orenburg State Pedagogical University. 2015;(1):52—63. (In Russ.)
- Perez-Collzos E, Catalan P. Genetic diversity analysis and conservation implications for the Iberian threatened populations of the Irano-Turanian relict Krascheninnikovia ceratoides (Chenopodiaceae). Biological Journal of the Linnean Society. 2007;92(3):419—429. doi: 10.1111/j.1095-8312.2007.00882.x
- Turchin TY, Ermolova AS, Pichueva GV. Survival and growth of aboriginal and introduced woody plant species at middle hill sandy sites in steppe zone. Forestry information. 2017;(3):20—34. (In Russ.) doi: 10.24419/ LHI.2304-3083.2017.3.02
- Kosolapov VM, Piskovatskiy YM, Shamsutdinova EZ, Shamsutdinov ZS, Kaminov YB, Kenzhegaliev GK. Phytocenotic forage plant breeding: background and some results. Fodder Production. 2017;(12):12—17. (In Russ.)
- Del Rio J, Peñas J. Kraschenninikovia ceratoides (L). Gueldenst., redescubierta en el marquesado del Zenete (Granada). Acta Botanica Malacitana. 2006; 31:200—202.
- Seidl A, Tremetsberger K, Pfanzelt S, Blattner FR, Neuffer B, Friesen N, Hurka H, Shmakov A, Batlai O, Čalasan AŽ, Vesselova PV, Bernhardt KG. The phylogeographic history of Krascheninnikovia reflects the development of dry steppes and semi-deserts in Eurasia. Scientific Reports. 2021; 11:6645. doi: 10.1038/ s41598-021-85735-z
- Vdovenko AV, Manaenkov AS, Radochinskaya LP. Dynamics of the state desertified lands of agricultural importance in South Russia. Doklady Rossiiskoi akademii sel’skokhozyaistvennykh nauk. 2015;(5):49—53. (In Russ.)
- Manaenkov AS, Rybashlykova LP. Increasing the efficiency of plant-cover restoration in the modern focus of deflation on pastures of the northwestern Caspian Region. Arid Ecosystems. 2020;10(4):358—367. doi: 10.1134/S 2079096120040149
- Manaenkov AS. Lesomelioratsiya aren zasushlivoi zony [Forest reclamation of arid zone arenas]. 2nd ed. Volgograd: VNIALMI publ.; 2018. (In Russ.)
- Sokht KA. Mashinnye tekhnologii vozdelyvaniya zernovykh kul’tur [Machine technologies of cultivation of grain crops]. Krasnodar; 2001. (In Russ.)