Features of the clinical manifestation of subcompensated intestinal dysbiosis in cats in assessing the effectiveness of its correction

Abstract

Formation and reproduction of gut microbiome begins at birth, while change in its composition depends mainly on various genetic, nutritional and environmental factors. The article considers the features of clinical manifestation of subcompensated intestinal dysbiosis in cats in assessing the effectiveness of its treatment. The studies were carried out on the basis of Department of Veterinary Medicine, RUDN University, and the clinical work was conducted at private veterinary clinics: ‘Avettura’, ‘Epiona’, ‘In the World with Animals’. Cats were selected for the experiment as they arrived at the initial appointment at veterinary clinics. The diagnosis of suspected intestinal dysbacteriosis was made considering anamnesis, clinical examination, and microbiological tests. The severity of intestinal dysbacteriosis was assessed on the results of clinical and laboratory studies. During the research, clinical and diagnostic approaches for subcompensated intestinal dysbacteriosis in cats were improved. Furthermore, effective ways of its treatment were developed. For subcompensated intestinal dysbacteriosis, administration of ‘Lactobifadol’ probiotic, ‘Vetelakt’ prebiotic and ‘Azoksivet’ immunomodulator showed the greatest therapeutic effect, which led to an overall clinical improvement in 5.50 days. Therapeutic efficacy of B3 regimen was also clearly evidenced by the positive changes in intestinal microbiota and hematological blood parameters during the pharmacorrection. Improvement of clinical diagnostic approaches, prognosis of intestinal dysbiosis of varying severity and treatment effectiveness in cats require will allow to study intestinal dysbiotic disorders in other animal species.

Full Text

Fig. 1. Study Design

 

Table 1. The effectiveness of grade 2 intestinal dysbacteriosis treatment in cats

Аnimal groups

Pool of clinical symptoms during therapy, days

Appetite normalization

Normalization of odor from the oral cavity

Normalization of faeces

General clinical improvement

1 experimental group B 1, n=5

7.60±0.40

4.80±0.37

4.40±0.24

8.20±0.37

2 experimental group B 2, n=5

7.00±0.31

4.40±0.24

4.20±0.20

7.60±0.24

3 experimental group B 3, n=6

4.50±0.22***

3.33±0.21**

3.16±0.16**

5.50±0.22***

Note. ** —  р < 0.01; *** —  р < 0.001

 

Table 2. Comparison of the microbiota of the intestinal tract, isolated from cats with subcompensated dysbacteriosis, during the therapy (lg)

Genus of microorganism

Healthy cats (n=6)

Scheme

n

Before therapy

During the pharmacorrection

Day 7

Day 14

Lactobacillus sp. p.

8.70±0.27

В1

5

6.16±0.30

7.33±0.32*

8.09±0.25**

В2

5

6.03±0.24

8.78±0.34***

9.62±0.37***

В3

6

4.29±1.38

8.59±0.31*

9.39±0.21**

Bifidobacterium sp. p.

9.35±0.42

В1

5

5.69±0.37

7.27±0.21**

9.20±0.22***

В2

5

2.56±1.06

8.18±0.61**

9.61±0.36***

В3

6

2.49±1.14

9.09±0.26***

9.81±0.35***

Staphylococcus sp. p.

3.23±0.88

В1

5

5.04±1.32

3.91±1.00

3.20±0.80

В2

5

2.81±1.72

2.19±0.95

1.44±0.72

В3

6

3.49±1.57

2.05±0.93

1.39±0.64

Streptococcus sp. p.

2.56±0.85

В1

5

4.13±1.23

2.96±0.91

2.44±0.78

В2

5

5.49±1.38

3.10±0.83

2.44±0.64

В3

6

4.30±1.39

2.68±0.86

2.11±0.68

Escherichia sp. p.

6.19±0.41

В1

5

7.25±0.55

7.79±0.33

8.09±0.25

В2

5

7.05±0.22

7.99±0.26*

8.25±0.22**

В3

6

5.98±1.20

7.79±0.26

7.85±0.24

Enterobacter sp. p.

2.19±1.04

В1

5

3.99±1.18

3.34±1.01

2.62±0.83

В2

5

1.10±1.10

1.47±0.90

1.36±0.83

В3

6

5.69±0.37

3.40±0.35**

2.43±0,32***

Bacillus sp. p.

1.32±0.86

В1

5

1.67±1.07

1.60±1.01

1.58±0.99

В2

5

2.46±1.51

1.94±0.83

1.80±0.77

В3

6

1.10±1.10

1.53±0.97

1.58±1.00

Candida sp. p.

1.35±0.86

В1

5

4.68±0.81

2.84±0.41

1.45±0.42**

В2

5

0

0

0

В3

6

2.05±1.30

0.63±0.43

0.36±0.23

Note. * —  р < 0.05; ** —  р < 0.01; *** —  р < 0.001.

 

Table 3. Dynamics of hematological blood parameters in cats with subcompensated intestinal dysbacteriosis during therapy

Indicators

Healthy cats (n=6)

Scheme

n

Before therapy

During the pharmacorrection

Day 7

Day 14

Hemoglobin, g/l

145.83±3.78

В1

5

117.20±3.15

119.20±2.95

124.80±3.12

В2

5

109.40±3.52

113.60±3.20

119.80±3.33

В3

6

107.33±4.01

127.50±2.43**

140.33±3.43***

SRE, mm/h

3.50±0.42

В1

5

14.80±2.13

12.00±1.73

8.80±1.06*

В2

5

17.60±1.36

13.60±1.07

7.00±0.70***

В3

6

14.66±1.02

4.50±0.42***

3.50±0.42***

LEC, arb. units

0.24±0.03

В1

5

1.28±0.21

1.02±0.17

0.71±0.10*

В2

5

1.61±0.13

1.19±0.10*

0.58±0.06***

В3

6

1.37±0.11

0.35±0.03***

0.24±0.03***

Leukocytes, g/l

8.38±0.59

В1

5

12.20±0,89

11.58±0.85

9.94±0.61

В2

5

13.50±0.65

12.48±0.70

9.36±0.32***

В3

6

12.63±0.72

8.73±0.41***

8.43±0.32***

Note. * —  р < 0.05; ** —  р < 0.01; *** —  р < 0.001.

×

About the authors

Pavel A. Rudenko

RUDN University

Author for correspondence.
Email: pavelrudenko76@yandex.ru
ORCID iD: 0000-0002-0418-9918

Doctor of Veterinary Sciences, Associate Professor, Department of Veterinary Medicine, Agrarian and Technological Institute

6 Miklukho-Maklaya st., Moscow, 117198, Russian Federation

Elena D. Sotnikova

RUDN University

Email: sotnikova-ed@rudn.ru
ORCID iD: 0000-0003-1253-1573

Candidate of Biological Sciences, Associate Professor, Agrarian and Technological Institute

6 Miklukho-Maklaya st., Moscow, 117198, Russian Federation

Elena A. Krotova

RUDN University

Email: krotova-ea@rudn.ru
ORCID iD: 0000-0003-1771-6091

Candidate of Veterinary Sciences, Associate Professor, Agrarian and Technological Institute

6 Miklukho-Maklaya st., Moscow, 117198, Russian Federation

Nikolay V. Babichev

RUDN University

Email: babichev-nv@rudn.ru
ORCID iD: 0000-0001-8444-8600

Candidate of Biological Sciences, Associate Professor, Agrarian and Technological Institute

6 Miklukho-Maklaya st., Moscow, 117198, Russian Federation

Stanislav G. Drukovsky

RUDN University

Email: drukovskiy-sg@rudn.ru
ORCID iD: 0000-0003-2556-6636

Candidate of Veterinary Sciences, Associate Professor, Agrarian and Technological Institute

6 Miklukho-Maklaya st., Moscow, 117198, Russian Federation

Nikolay S. Bugrov

RUDN University

Email: bugr24-8@mail.ru
ORCID iD: 0000-0002-4116-0620

PhD student, Department of Veterinary Medicine, Agrarian and Technological Institute

6 Miklukho-Maklaya st., Moscow, 117198, Russian Federation

References

  1. Marks SL, Rankin SC, Byrne BA, Weese JS. Enteropathogenic bacteria in dogs and cats: diagnosis, epidemiology, treatment, and control. J Vet Intern Med. 2011; 25(6):1195-1208. doi: 10.1111/j.19391676.2011.00821.x
  2. Rudenko PA, Rudenko AA, Vatnikov YA, Kuznetsov VI, Yagnikov SA. Clinical and biochemical parameters of blood in acute gastroenteritis in dogs. Bulletin of KSAU. 2020; (7):133-139. (In Russ.). doi: 0.36718/18194036-2020-7-133-139
  3. Wang PX, Deng XR, Zhang CH, Yuan HJ. Gut microbiota and metabolic syndrome. Chin Med J. 2020; 133(7):808-816. doi: 10.1097/CM9.0000000000000696
  4. Virili C, Fallahi P, Antonelli A, Benvenga S, Centanni M. Gut microbiota and Hashimoto’s thyroiditis. Rev Endocr Metab Disord. 2018; 19(4):293-300. doi: 10.1007/s11154-018-9467-y
  5. Zeltser N, Meyer I, Hernandez GV, Trahan MJ, Fanter RK, Abo-Ismail M, et al. Neurodegeneration in juvenile Iberian pigs with diet-induced nonalcoholic fatty liver disease. Am J Physiol Endocrinol Metab. 2020; 319(3):592-606. doi: 10.1152/ajpendo.00120.2020
  6. Singh VP, Fontaine MA, Mangat R, Fouhse JM, Diane A, Willing BP, et al. High vaccenic acid content in beef fat attenuates high fat and high carbohydrate western diet induced changes in lipid metabolism and gut microbiota in pigs. Microorganisms. 2021; 9(12):2517. doi: 10.3390/microorganisms9122517
  7. Rudenko P, Vatnikov Y, Engashev S, Kvochko A, Notina E, Bykova I, et al. The role of lipid peroxidation products and antioxidant enzymes in the pathogenesis of aseptic and purulent inflammation in cats. J Adv Vet Anim Res. 2021; 8(2):210-217. doi: 10.5455/javar.2021.h504
  8. Suchodolski JS. Companion animals symposium: microbes and gastrointestinal health of dogs and cats. J Anim Sci. 2011; 89(5):1520-1530. doi: 10.2527/jas.2010-3377
  9. Vemuri R, Gundamaraju R, Eri R. Role of lactic acid probiotic bacteria in IBD. Curr Pharm Des. 2017; 23(16):2352-2355. doi: 10.2174/1381612823666170207100025
  10. Suchodolski JS. Diagnosis and interpretation of intestinal dysbiosis in dogs and cats. Vet J. 2016; 215:30-37. doi: 10.1016/j.tvjl.2016.04.011
  11. Moon CD, Young W, Maclean PH, Cookson AL, Bermingham EN. Metagenomic insights into the roles of Proteobacteria in the gastrointestinal microbiomes of healthy dogs and cats. Microb Open. 2018; 7(5): e00677. doi: 10.1002/mbo3.677
  12. Older CE, Gomes MOS, Hoffmann AR, Policano MD, Reis CACD, Carregaro AB, et al. Influence of the FIV status and chronic gingivitis on feline oral microbiota. Pathogens. 2020; 9(5):383. doi: 10.3390/ pathogens9050383
  13. Vatnikov Y, Shabunin S, Kulikov E, Karamyan A, Murylev V, Elizarov P, et al. The effi of therapy the piglets gastroenteritis with combination of Enrofloxacin and phytosorbent Hypericum perforatum L. International Journal of Pharmaceutical Research. 2020; 12(Suppl.2):3064-3073. doi: 10.31838/ijpr/2020.SP2.373
  14. Peirce JM, Alviña KJ. The role of inflammation and the gut microbiome in depression and anxiety. Journal of Neuroscience Research. 2019; 97(10):1223-1241. doi: 10.1002/jnr.24476
  15. Rudenko PA. Modern approaches to the fight against purulent-inflammatory processes in small domestic animals. Russian Veterinary Journal. 2016; (3):26-29. (In Russ.).
  16. Durack J, Lynch SV. The gut microbiome: Relationships with disease and opportunities for therapy. J Exp Med. 2019; 216(1):20-40. doi: 10.1084/jem.20180448
  17. Mohajeri MH, La Fata G, Steinert RE, Weber P. Relationship between the gut microbiome and brain function. Nutr Rev. 2018; 76(7):481-496. doi: 10.1093/nutrit/nuy009
  18. Weersma RK, Zhernakova A, Fu J. Interaction between drugs and the gut microbiome. Gut. 2020; 69(8):1510-1519. doi: 10.1136/gutjnl-2019-320204
  19. Xiao X, Cheng Y, Fu J, Lu Z, Wang F, Jin M, et al. Gut immunity and microbiota dysbiosis are associated with altered bile acid metabolism in LPS-challenged piglets. Oxid Med Cell Longev. 2021; 2:6634821. doi: 10.1155/2021/6634821
  20. Suchodolski JS. Analysis of the gut microbiome in dogs and cats. Vet Clin Pathol. 2021; 50(S 1):6-17. doi: 10.1111/vcp.13031
  21. Kathrani A, Fascetti AJ, Larsen JA, Maunder C, Hall EJ. Whole-blood taurine concentrations in cats with intestinal disease. J Vet Intern Med. 2017; 31(4):1067-1073. doi: 10.1111/jvim.14773
  22. Yu LC. Microbiota dysbiosis and barrier dysfunction in inflammatory bowel disease and colorectal cancers: exploring a common ground hypothesis. J Biomed Sci. 2018; 25(1):79. doi: 10.1186/s12929-018-0483-8
  23. Zhang Y, Wang Y, Chen D, Yu B, Zheng P, Mao X, Luo Y, Li Y, He J. Dietary chlorogenic acid supplementation affects gut morphology, antioxidant capacity and intestinal selected bacterial populations in weaned piglets. Food Funct. 2018; 9(9):4968-4978. doi: 10.1039/c8fo01126e
  24. Rudenko P, Vatnikov Y, Sachivkina N, Rudenko A, Kulikov E, Lutsay V, et al. Search for promising strains of probiotic microbiota isolated from different biotopes of healthy cats for use in the control of surgical infections. Pathogens. 2021; 10(6):667. doi: 10.3390/pathogens10060667
  25. Rudenko PA. Lipid peroxidation and antioxidant system activity in cats with inflammatory processes. Veterinary. 2016; (10):45-48. (In Russ.).

Supplementary files

Supplementary Files
Action
1. Fig. 1. Study Design

Download (34KB)

Copyright (c) 2022 Rudenko P.A., Sotnikova E.D., Krotova E.A., Babichev N.V., Drukovsky S.G., Bugrov N.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies