Diversity of soybean bacterial blight pathogen Pseudomonas savastanoi pv. glycinea in the Russian Federation

Cover Page

Cite item

Abstract

One of the most harmful bacterial diseases of soybean is bacterial blight caused by bacterium Pseudomonas savastanoi pv. glycinea. The pathogen can reduce soybean yield (up to 40 %), oil content and seed germination. To manage the pathogen damage, protection measures should be comprehensive, the most cardinal of which is breeding for resistance. To obtain resistant varieties, it is necessary to understand the diversity of the pathogen in the area and to breed against the most common and harmful forms of the pathogen. In this regard, the aim of the study was to characterize Pseudomonas savastanoi pv. glycinea strains circulating in the Russian Federation as casual agents of bacterial blight of soybean. 12 strains of the soybean bacterial blight pathogen were isolated from soybean plant parts and seeds grown in different regions of the Russian Federation. The isolated strains were identical to the reference strain Psg CFBP 2214 in fluorescence, colony morphology on King B medium and LOPAT test results (+, –, –, –, –, +) and formed an amplicon in specific PCR analysis of cfl (coronafacate ligase) gene. The strains had different virulence to Kasatka soybean plants, and the width of symptomatic zone when leaves were artificially inoculated ranged from 3.23 mm (in strain G7) to 6.53 mm in strain G4. Comparison of the obtained gltA and ITS 16S-23S rRNA gene sequences showed a high (95.8…98.8 %) identity to the bacterial blight pathogen strains deposited to NCBI Genbank, and phylogenetic analysis showed a low intra-strain genetic polymorphism. Analysis of the race composition of the strains showed that the race 4 was predominant in the Russian Federation.

Full Text

 

Table 1. Pseudomonas savastanoi pv. glycinea strains used in the research

Strain

Host

Part of plant

Source

Year of isolation

Strains of Pseudomonas savastanoi pv. glycinea

G1

Soybean

(Glycine max)

seeds

Voronezh region

2019

G2

Amur region

2019

G3

Amur region

2019

G4

Khabarovsk region

2020

G5

Voronezh region

2020

G6

Voronezh region

2021

G7

Voronezh region

2021

G8

leaves

Primorsky region

2021

G9

seeds

Khabarovsk region

2021

G10

Amur Region

2021

G11

Khabarovsk region

2021

G17

Khabarovsk region

2021

CFBP 2214

leaves

New Zealand

1968

Pseudomonas sp.

P. fluorescens

soil

Krasnodar region

2021

P. putida

soil

2021

 

Fig. 1. Virulence of Pseudomonas savastanoi pv. glycinea strains: A – difference in chlorosis zone width between strains and control; Б – Values of leaf lesion zone width 12 days after inoculation with different strains. Different letters near bars indicate statistical difference by Duncan test (P < 0.05)
Source: created by the authors

 

Fig. 2. PCR detection of cfl gene in Pseudomonas savastanoi pv. glycinea strains: M – 100+bp molecular weight marker (Eurogen) (#NL002); K– – negative control (reaction without DNA);  G1-G17 — analyzed strains
Source: created by the authors

Table 2. Pseudomonas savastanoi pv. glycinea strains identified by gltA and ITS 16S-23S rRNA genes sequences

Strain

Closest species when comparing sequences with Genbank database by

Sequence identification number in Genbank

citrate synthase gene (gltA)

ITS rRNA 16S-23S gene

by citrate synthase gene (gltA)

by ITS rRNA 16S-23S gene

G1

P. syringae; P. savastanoi

P. amygdali; P. syringae

OQ743493

OR750531

G2

P. savastanoi; P. syringae

P. amygdali; P. syringae

OQ743494

OR750532

G3

P. savastanoi

P. syringae; P. savastanoi

OQ743495

OR750533

G4

P. savastanoi; P. syringae

P. syringae

OQ743496

OR750534

G5

P. savastanoi

P. syringae; P. amygdali

OQ743497

OR750535

G6

P. savastanoi; P. syringae

P. syringae

OQ743498

OR750536

G7

P. syringae; P. amygdali

P. amygdali; P. syringae

OQ743499

OR750537

G8

P. savastanoi

P. syringae; P. savastanoi

OQ743500

OR750538

G9

P. savastanoi; P. syringae

P. syringae

OQ743501

OR750539

G10

P. savastanoi; P. syringae

P. syringae; P. amygdali

OQ743502

OR750540

G11

P. savastanoi; P. syringae

P. amygdali; P. syringae

OQ743503

OR750541

G17

P. savastanoi

P. syringae; P. amygdali

OQ743504

OR750542

 

Fig. 3. Phylogenetic trees of nucleotide sequences of citrate synthase (gltA) (A) and ITS 16S‑23S rRNA (Б) genes of Pseudomonas spp. Orange boxes indicate the strains studied in the research
Source: created by the authors

Fig. 4. Heat map of ITS 16S‑23S rRNA gene sequences showing pairwise genetic distances of P. savastanoi pv. glycinea strains and other P. syringae pathovars. Different colors correspond to the percent of genetic difference in pairwise comparison of DNA from different strains
Source: created by the authors

Table 3. Results of inoculation of differentiator varieties with Pseudomonas savastanoi pv. glycinea strains used in this work (S = susceptible, R = resistant)

Сорт-дифференциатор /Differentiator variety

Штамм / Strain

G1

G2

G3

G4

G5

G6

G7

G8

G9

G10

G11

G17

CFBP 2214

Acme

S

S

S

S

S

S

S

S

S

S

S

S

S

Chippewa

S

S

S

S

S

S

S

S

S

S

S

S

S

Flambeau

S

S

S

S

S

S

S

S

S

S

S

S

S

Harosoy

S

S

S

S

S

S

S

S

S

S

S

S

S

Lindarin

S

S

S

S

S

S

S

S

S

S

S

S

S

Merit

S

S

S

S

S

S

S

S

S

S

S

S

S

Norchief

S

S

S

S

S

S

S

S

S

S

S

S

S

Hardee

S

S

S

S

S

S

S

S

S

S

S

S

S

Peking

S

S

S

S

S

S

S

S

S

S

S

S

S

Centennial

S

S

S

S

S

S

S

S

S

S

S

S

S

Номер расы / Number of race

4

4

4

4

4

4

4

4

4

4

4

4

4

 

×

About the authors

Rashit I. Tarakanov

Russian State Agrarian University - Moscow Timiryazev Agricultural Academy

Author for correspondence.
Email: tarakanov.rashit@mail.ru
ORCID iD: 0000-0002-3235-8467
SPIN-code: 9049-7157

assistant, PhD student, Department of Plant Protection

49 Timiryazevskaya st., Moscow, 127434, Russian Federation

Peter V. Evseev

Shemyakin - Ovchinnikov Institute of Bioorganic Chemistry

Email: petevseev@gmail.com
ORCID iD: 0000-0002-1646-9802
SPIN-code: 4275-9187

Candidate of Biological Sciences, Researcher

16/10 Miklouho-Maklaya st., Moscow, 117997, Russian Federation

Konstantin S. Troshin

Russian State Agrarian University - Moscow Timiryazev Agricultural Academy

Email: konstantinetr@gmail.com
ORCID iD: 0009-0004-5018-1265
SPIN-code: 6032-4313

Master student, Junior researcher, Department of Plant Protection

49 Timiryazevskaya st., Moscow, 127434, Russian Federation

Aleksandr N. Ignatov

RUDN University

Email: an.ignatov@gmail.com
ORCID iD: 0000-0003-2948-753X
SPIN-code: 3324-4985

Doctor of Biological Sciences, Professor, Department of Agrobiotechnology

6 Miklouho-Maklaya st., Moscow, 117198

Fevzi S.U. Dzhalilov

Russian State Agrarian University - Moscow Timiryazev Agricultural Academy

Email: labzara@mail.ru
ORCID iD: 0000-0002-5014-8375
SPIN-code: 3033-3991

Doctor of Biological Sciences, Professor, Head of the Department of Plant Protection

49 Timiryazevskaya st., Moscow, 127434, Russian Federation

References

  1. Jagtap GP, Dhopte SB, Dey U. Bio-efficacy of different antibacterial antibiotic, plant extracts and bioagents against bacterial blight of soybean caused by Pseudomonas syringae pv. glycinea. Sci J Microbiol. 2012;1(1):1-9.
  2. Zhang J, Wang X, Lu Y, Bhusal SJ, Song Q, Cregan PB, et al. Genome-wide scan for seed composition provides insights into soybean quality improvement and the impacts of domestication and breeding. Mol Plant. 2018;11(3):460-472. doi: 10.1016/j.molp.2017.12.016
  3. Shepherd LM, Block CC. Detection of Pseudomonas savastanoi pv. glycinea in Soybean Seeds. In: Detection of Plant-Pathogenic Bacteria in Seed and Other Planting Material. 2nd ed. The American Phytopathological Society: St. Paul, MN, USA; 2017. doi: 10.1094/9780890545416.013
  4. Alvarez E. New assays for detection of Pseudomonas syringae pv. glycinea in soybean seed. Plant Dis. 1995;79(1):12-14. doi: 10.1094/PD-79-0012
  5. Wensing A, Braun SD, Büttner P, Expert D, Völksch B, Ullrich MS, et al. Impact of Siderophore Production by Pseudomonas syringae pv. syringae 22d/93 on Epiphytic Fitness and Biocontrol Activity against Pseudomonas syringae pv. glycinea 1a/96. Appl Environ Microbiol. 2010;76(9):2704-2711. doi: 10.1128/AEM.02979-09
  6. Lelliott RA, Billing E, Hayward AC. A determinative scheme for the fluorescent plant pathogenic pseudomonads. J Appl Bacteriol. 1966;29(3):470-489. doi: 10.1111/j.1365-2672.1966.tb03499.x
  7. Ignjatov M, Milošević M, Nikolić Z, Vujaković M, Petrović D. Characterization of Pseudomonas savastanoi pv. glycinea isolates from Vojvodina. Phytopathol Pol. 2007;45:43-54.
  8. Bereswill S, Bugert P, Völksch B, Ullrich M, Bender CL, Geider K. Identification and relatedness of coronatine-producing Pseudomonas syringae pathovars by PCR analysis and sequence determination of the amplification products. Appl Environ Microbiol. 1994;60(8):2924-2930. doi: 10.1128/aem.60.8.2924-2930.1994
  9. Sarkar SF, Guttman DS. Evolution of the core genome of Pseudomonas syringae, a highly clonal, endemic plant pathogen. Appl Environ Microbiol. 2004;70(4):1999-2012. doi: 10.1128/AEM.70.4.1999-2012.2004
  10. Rzhetsky A, Nei M. A Simple Method for Estimating and Testing Minimum-Evolution Trees. Molecular Biology and Evolution. 1991;9(5):945-967.
  11. Tarakanov RI. Evaluation of the resistance of soybean cultivars to bacterial diseases on an artificial inoculation background. Izvestiya of Timiryazev Agricultural Academy. 2022;(5):92-107. (In Russ.). doi: 10.26897/0021-342Х-2022-5-92-107
  12. Abo-Moch F, Mavridis A, Rudolph K. Determination of Races of Pseudomonas syringae pv. glycinea Occurring in Europe. Journal of Phytopathology. 1995;143(1):1-5. doi: 10.1111/j.1439-0434.1995.tb00190.x
  13. Jones LA, Saha S, Collmer A, Smart CD, Lindeberg M. Genome-Assisted Development of a Diagnostic Protocol for Distinguishing High Virulence Pseudomonas syringae pv. tomato Strains. Plant Disease. 2015;99(4):527-534. doi: 10.1094/PDIS-08-14-0833-RE
  14. Moriwaki J, Mizuno A, Sato M, Kadota I, Nishiyama K. Difference in production of coronatine on potato tuber tissue and in liquid culture by Pseudomonas syringae pv. glycinea. Japanese Journal of Phytopathology. 1996;62(5):544-547. doi: 10.3186/jjphytopath.62.544
  15. Gardan L, Bollet C, Ghorrah MA, Grimont F, Grimont PAD. DNA relatedness among the pathovar strains of Pseudomonas syringae subsp. savastanoi Janse (1982) and proposal of Pseudomonas savastanoi sp. nov. International Journal of Systematic Bacteriology. 1992;42(4):606-612.
  16. Popović T, Jelušić A, Dimkić I, Stanković S, Poštić D, Aleksić G, et al. Molecular Characterization of Pseudomonas syringae pv. coriandricola and Biochemical Changes Attributable to the Pathological Response on Its Hosts Carrot, Parsley, and Parsnip. Plant Dis. 2019;103(12):3072-3082. doi: 10.1094/PDIS-03-19-0674-RE
  17. Rahi YJ, Turco S, Taratufolo MC, Tatì M, Cerboneschi M, Tegli S, et al. Genetic diversity and population structure of Pseudomonas savastanoi, an endemic pathogen of the Mediterranean area, revealed up to strain level by the MLVA assay. J Plant Pathol. 2020;102:1051-1064. doi: 10.1007/s42161-020-00589-0
  18. Marques ASdA, Corbière R, Gardan L, Tourte C, Manceau C, Taylor JD, et al. Multiphasic Approach for the identification of the different classification levels of Pseudomonas savastanoi pv. phaseolicola. European Journal of Plant Pathology. 2000;106:715-734. doi: 10.1023/A:1026563831461
  19. Grothues D, Rudolph K. Macrorestriction analysis of plant pathogenic Pseudomonas species and pathovars. FEMS Microbiology Letters. 1991;79(1):83-88. doi: 10.1111/j.1574-6968.1991.tb04509.x
  20. Li L, Yuan L, Shi Y, Xie X, Chai A, Wang Q, et al. Comparative genomic analysis of Pseudomonas amygdali pv. lachrymans NM002: Insights into its potential virulence genes and putative invasion determinants. Genomics. 2019;111(6):1493-1503. doi: 10.1016/j.ygeno.2018.10.004
  21. Cross JE, Kennedy BW, Lambert JW, Cooper RL. Pathogenic races of bacterial blight pathogen of soybeans, Pseudomonas glycinea. Plant Disease Report. 1966;50(8):557-560.
  22. Gnanamanickam SS, Ward EWB. Bacterial blight of soybeans: a new race of Pseudomonas syringae pv. glycinea and variations in systemic symptoms. Can J Plant Pathol. 1982;4(1):73-78. doi: 10.1080/07060668209501341
  23. Prom LK, Venette JR. Races of Pseudomonas syringae pv. glycinea on Commercial Soybean in Eastern North Dakota. Plant Dis. 1997;81(5):541-544. doi: 10.1094/PDIS.1997.81.5.541
  24. Fett WF, and Sequeira L. Further characterization of the physiologic races of Pseudomonas glycinea. Can J Bot. 1981;59(3):283-287. doi: 10.1139/b81-040

Supplementary files

Supplementary Files
Action
1. Fig. 1. Virulence of Pseudomonas savastanoi pv. glycinea strains: A – difference in chlorosis zone width between strains and control; Б – Values of leaf lesion zone width 12 days after inoculation with different strains. Different letters near bars indicate statistical difference by Duncan test (P < 0.05)

Download (118KB)
2. Fig. 2. PCR detection of cfl gene in Pseudomonas savastanoi pv. glycinea strains: M – 100+bp molecular weight marker (Eurogen) (#NL002); K– – negative control (reaction without DNA); G1-G17 — analyzed strains

Download (33KB)
3. Fig. 3. Phylogenetic trees of nucleotide sequences of citrate synthase (gltA) (A) and ITS 16S‑23S rRNA (Б) genes of Pseudomonas spp. Orange boxes indicate the strains studied in the research

Download (198KB)
4. Fig. 4. Heat map of ITS 16S‑23S rRNA gene sequences showing pairwise genetic distances of P. savastanoi pv. glycinea strains and other P. syringae pathovars. Different colors correspond to the percent of genetic difference in pairwise comparison of DNA from different strains

Download (146KB)

Copyright (c) 2024 Tarakanov R.I., Evseev P.V., Troshin K.S., Ignatov A.N., Dzhalilov F.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies