Diversity of soybean bacterial blight pathogen Pseudomonas savastanoi pv. glycinea in the Russian Federation
- Authors: Tarakanov R.I.1, Evseev P.V.2, Troshin K.S.1, Ignatov A.N.3, Dzhalilov F.S.1
-
Affiliations:
- Russian State Agrarian University - Moscow Timiryazev Agricultural Academy
- Shemyakin - Ovchinnikov Institute of Bioorganic Chemistry
- RUDN University
- Issue: Vol 19, No 1 (2024): Factors of sustainable animal productivity: from genomics to therapy
- Pages: 139-154
- Section: Plant protection
- URL: https://agrojournal.rudn.ru/agronomy/article/view/19997
- DOI: https://doi.org/10.22363/2312-797X-2024-19-1-139-154
- EDN: https://elibrary.ru/AIEVBJ
Cite item
Full Text
Abstract
One of the most harmful bacterial diseases of soybean is bacterial blight caused by bacterium Pseudomonas savastanoi pv. glycinea. The pathogen can reduce soybean yield (up to 40 %), oil content and seed germination. To manage the pathogen damage, protection measures should be comprehensive, the most cardinal of which is breeding for resistance. To obtain resistant varieties, it is necessary to understand the diversity of the pathogen in the area and to breed against the most common and harmful forms of the pathogen. In this regard, the aim of the study was to characterize Pseudomonas savastanoi pv. glycinea strains circulating in the Russian Federation as casual agents of bacterial blight of soybean. 12 strains of the soybean bacterial blight pathogen were isolated from soybean plant parts and seeds grown in different regions of the Russian Federation. The isolated strains were identical to the reference strain Psg CFBP 2214 in fluorescence, colony morphology on King B medium and LOPAT test results (+, –, –, –, –, +) and formed an amplicon in specific PCR analysis of cfl (coronafacate ligase) gene. The strains had different virulence to Kasatka soybean plants, and the width of symptomatic zone when leaves were artificially inoculated ranged from 3.23 mm (in strain G7) to 6.53 mm in strain G4. Comparison of the obtained gltA and ITS 16S-23S rRNA gene sequences showed a high (95.8…98.8 %) identity to the bacterial blight pathogen strains deposited to NCBI Genbank, and phylogenetic analysis showed a low intra-strain genetic polymorphism. Analysis of the race composition of the strains showed that the race 4 was predominant in the Russian Federation.
Full Text
Table 1. Pseudomonas savastanoi pv. glycinea strains used in the research
Strain | Host | Part of plant | Source | Year of isolation |
Strains of Pseudomonas savastanoi pv. glycinea | ||||
G1 | Soybean (Glycine max) | seeds | Voronezh region | 2019 |
G2 | Amur region | 2019 | ||
G3 | Amur region | 2019 | ||
G4 | Khabarovsk region | 2020 | ||
G5 | Voronezh region | 2020 | ||
G6 | Voronezh region | 2021 | ||
G7 | Voronezh region | 2021 | ||
G8 | leaves | Primorsky region | 2021 | |
G9 | seeds | Khabarovsk region | 2021 | |
G10 | Amur Region | 2021 | ||
G11 | Khabarovsk region | 2021 | ||
G17 | Khabarovsk region | 2021 | ||
CFBP 2214 | leaves | New Zealand | 1968 | |
Pseudomonas sp. | ||||
P. fluorescens | — | soil | Krasnodar region | 2021 |
P. putida | — | soil | 2021 |
Fig. 1. Virulence of Pseudomonas savastanoi pv. glycinea strains: A – difference in chlorosis zone width between strains and control; Б – Values of leaf lesion zone width 12 days after inoculation with different strains. Different letters near bars indicate statistical difference by Duncan test (P < 0.05)
Source: created by the authors
Fig. 2. PCR detection of cfl gene in Pseudomonas savastanoi pv. glycinea strains: M – 100+bp molecular weight marker (Eurogen) (#NL002); K– – negative control (reaction without DNA); G1-G17 — analyzed strains
Source: created by the authors
Table 2. Pseudomonas savastanoi pv. glycinea strains identified by gltA and ITS 16S-23S rRNA genes sequences
Strain | Closest species when comparing sequences with Genbank database by | Sequence identification number in Genbank | ||
citrate synthase gene (gltA) | ITS rRNA 16S-23S gene | by citrate synthase gene (gltA) | by ITS rRNA 16S-23S gene | |
G1 | P. syringae; P. savastanoi | P. amygdali; P. syringae | OQ743493 | OR750531 |
G2 | P. savastanoi; P. syringae | P. amygdali; P. syringae | OQ743494 | OR750532 |
G3 | P. savastanoi | P. syringae; P. savastanoi | OQ743495 | OR750533 |
G4 | P. savastanoi; P. syringae | P. syringae | OQ743496 | OR750534 |
G5 | P. savastanoi | P. syringae; P. amygdali | OQ743497 | OR750535 |
G6 | P. savastanoi; P. syringae | P. syringae | OQ743498 | OR750536 |
G7 | P. syringae; P. amygdali | P. amygdali; P. syringae | OQ743499 | OR750537 |
G8 | P. savastanoi | P. syringae; P. savastanoi | OQ743500 | OR750538 |
G9 | P. savastanoi; P. syringae | P. syringae | OQ743501 | OR750539 |
G10 | P. savastanoi; P. syringae | P. syringae; P. amygdali | OQ743502 | OR750540 |
G11 | P. savastanoi; P. syringae | P. amygdali; P. syringae | OQ743503 | OR750541 |
G17 | P. savastanoi | P. syringae; P. amygdali | OQ743504 | OR750542 |
Fig. 3. Phylogenetic trees of nucleotide sequences of citrate synthase (gltA) (A) and ITS 16S‑23S rRNA (Б) genes of Pseudomonas spp. Orange boxes indicate the strains studied in the research
Source: created by the authors
Fig. 4. Heat map of ITS 16S‑23S rRNA gene sequences showing pairwise genetic distances of P. savastanoi pv. glycinea strains and other P. syringae pathovars. Different colors correspond to the percent of genetic difference in pairwise comparison of DNA from different strains
Source: created by the authors
Table 3. Results of inoculation of differentiator varieties with Pseudomonas savastanoi pv. glycinea strains used in this work (S = susceptible, R = resistant)
Сорт-дифференциатор /Differentiator variety | Штамм / Strain | ||||||||||||
G1 | G2 | G3 | G4 | G5 | G6 | G7 | G8 | G9 | G10 | G11 | G17 | CFBP 2214 | |
Acme | S | S | S | S | S | S | S | S | S | S | S | S | S |
Chippewa | S | S | S | S | S | S | S | S | S | S | S | S | S |
Flambeau | S | S | S | S | S | S | S | S | S | S | S | S | S |
Harosoy | S | S | S | S | S | S | S | S | S | S | S | S | S |
Lindarin | S | S | S | S | S | S | S | S | S | S | S | S | S |
Merit | S | S | S | S | S | S | S | S | S | S | S | S | S |
Norchief | S | S | S | S | S | S | S | S | S | S | S | S | S |
Hardee | S | S | S | S | S | S | S | S | S | S | S | S | S |
Peking | S | S | S | S | S | S | S | S | S | S | S | S | S |
Centennial | S | S | S | S | S | S | S | S | S | S | S | S | S |
Номер расы / Number of race | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
About the authors
Rashit I. Tarakanov
Russian State Agrarian University - Moscow Timiryazev Agricultural Academy
Author for correspondence.
Email: tarakanov.rashit@mail.ru
ORCID iD: 0000-0002-3235-8467
SPIN-code: 9049-7157
assistant, PhD student, Department of Plant Protection
49 Timiryazevskaya st., Moscow, 127434, Russian FederationPeter V. Evseev
Shemyakin - Ovchinnikov Institute of Bioorganic Chemistry
Email: petevseev@gmail.com
ORCID iD: 0000-0002-1646-9802
SPIN-code: 4275-9187
Candidate of Biological Sciences, Researcher
16/10 Miklouho-Maklaya st., Moscow, 117997, Russian FederationKonstantin S. Troshin
Russian State Agrarian University - Moscow Timiryazev Agricultural Academy
Email: konstantinetr@gmail.com
ORCID iD: 0009-0004-5018-1265
SPIN-code: 6032-4313
Master student, Junior researcher, Department of Plant Protection
49 Timiryazevskaya st., Moscow, 127434, Russian FederationAleksandr N. Ignatov
RUDN University
Email: an.ignatov@gmail.com
ORCID iD: 0000-0003-2948-753X
SPIN-code: 3324-4985
Doctor of Biological Sciences, Professor, Department of Agrobiotechnology
6 Miklouho-Maklaya st., Moscow, 117198Fevzi S.U. Dzhalilov
Russian State Agrarian University - Moscow Timiryazev Agricultural Academy
Email: labzara@mail.ru
ORCID iD: 0000-0002-5014-8375
SPIN-code: 3033-3991
Doctor of Biological Sciences, Professor, Head of the Department of Plant Protection
49 Timiryazevskaya st., Moscow, 127434, Russian FederationReferences
- Jagtap GP, Dhopte SB, Dey U. Bio-efficacy of different antibacterial antibiotic, plant extracts and bioagents against bacterial blight of soybean caused by Pseudomonas syringae pv. glycinea. Sci J Microbiol. 2012;1(1):1-9.
- Zhang J, Wang X, Lu Y, Bhusal SJ, Song Q, Cregan PB, et al. Genome-wide scan for seed composition provides insights into soybean quality improvement and the impacts of domestication and breeding. Mol Plant. 2018;11(3):460-472. doi: 10.1016/j.molp.2017.12.016
- Shepherd LM, Block CC. Detection of Pseudomonas savastanoi pv. glycinea in Soybean Seeds. In: Detection of Plant-Pathogenic Bacteria in Seed and Other Planting Material. 2nd ed. The American Phytopathological Society: St. Paul, MN, USA; 2017. doi: 10.1094/9780890545416.013
- Alvarez E. New assays for detection of Pseudomonas syringae pv. glycinea in soybean seed. Plant Dis. 1995;79(1):12-14. doi: 10.1094/PD-79-0012
- Wensing A, Braun SD, Büttner P, Expert D, Völksch B, Ullrich MS, et al. Impact of Siderophore Production by Pseudomonas syringae pv. syringae 22d/93 on Epiphytic Fitness and Biocontrol Activity against Pseudomonas syringae pv. glycinea 1a/96. Appl Environ Microbiol. 2010;76(9):2704-2711. doi: 10.1128/AEM.02979-09
- Lelliott RA, Billing E, Hayward AC. A determinative scheme for the fluorescent plant pathogenic pseudomonads. J Appl Bacteriol. 1966;29(3):470-489. doi: 10.1111/j.1365-2672.1966.tb03499.x
- Ignjatov M, Milošević M, Nikolić Z, Vujaković M, Petrović D. Characterization of Pseudomonas savastanoi pv. glycinea isolates from Vojvodina. Phytopathol Pol. 2007;45:43-54.
- Bereswill S, Bugert P, Völksch B, Ullrich M, Bender CL, Geider K. Identification and relatedness of coronatine-producing Pseudomonas syringae pathovars by PCR analysis and sequence determination of the amplification products. Appl Environ Microbiol. 1994;60(8):2924-2930. doi: 10.1128/aem.60.8.2924-2930.1994
- Sarkar SF, Guttman DS. Evolution of the core genome of Pseudomonas syringae, a highly clonal, endemic plant pathogen. Appl Environ Microbiol. 2004;70(4):1999-2012. doi: 10.1128/AEM.70.4.1999-2012.2004
- Rzhetsky A, Nei M. A Simple Method for Estimating and Testing Minimum-Evolution Trees. Molecular Biology and Evolution. 1991;9(5):945-967.
- Tarakanov RI. Evaluation of the resistance of soybean cultivars to bacterial diseases on an artificial inoculation background. Izvestiya of Timiryazev Agricultural Academy. 2022;(5):92-107. (In Russ.). doi: 10.26897/0021-342Х-2022-5-92-107
- Abo-Moch F, Mavridis A, Rudolph K. Determination of Races of Pseudomonas syringae pv. glycinea Occurring in Europe. Journal of Phytopathology. 1995;143(1):1-5. doi: 10.1111/j.1439-0434.1995.tb00190.x
- Jones LA, Saha S, Collmer A, Smart CD, Lindeberg M. Genome-Assisted Development of a Diagnostic Protocol for Distinguishing High Virulence Pseudomonas syringae pv. tomato Strains. Plant Disease. 2015;99(4):527-534. doi: 10.1094/PDIS-08-14-0833-RE
- Moriwaki J, Mizuno A, Sato M, Kadota I, Nishiyama K. Difference in production of coronatine on potato tuber tissue and in liquid culture by Pseudomonas syringae pv. glycinea. Japanese Journal of Phytopathology. 1996;62(5):544-547. doi: 10.3186/jjphytopath.62.544
- Gardan L, Bollet C, Ghorrah MA, Grimont F, Grimont PAD. DNA relatedness among the pathovar strains of Pseudomonas syringae subsp. savastanoi Janse (1982) and proposal of Pseudomonas savastanoi sp. nov. International Journal of Systematic Bacteriology. 1992;42(4):606-612.
- Popović T, Jelušić A, Dimkić I, Stanković S, Poštić D, Aleksić G, et al. Molecular Characterization of Pseudomonas syringae pv. coriandricola and Biochemical Changes Attributable to the Pathological Response on Its Hosts Carrot, Parsley, and Parsnip. Plant Dis. 2019;103(12):3072-3082. doi: 10.1094/PDIS-03-19-0674-RE
- Rahi YJ, Turco S, Taratufolo MC, Tatì M, Cerboneschi M, Tegli S, et al. Genetic diversity and population structure of Pseudomonas savastanoi, an endemic pathogen of the Mediterranean area, revealed up to strain level by the MLVA assay. J Plant Pathol. 2020;102:1051-1064. doi: 10.1007/s42161-020-00589-0
- Marques ASdA, Corbière R, Gardan L, Tourte C, Manceau C, Taylor JD, et al. Multiphasic Approach for the identification of the different classification levels of Pseudomonas savastanoi pv. phaseolicola. European Journal of Plant Pathology. 2000;106:715-734. doi: 10.1023/A:1026563831461
- Grothues D, Rudolph K. Macrorestriction analysis of plant pathogenic Pseudomonas species and pathovars. FEMS Microbiology Letters. 1991;79(1):83-88. doi: 10.1111/j.1574-6968.1991.tb04509.x
- Li L, Yuan L, Shi Y, Xie X, Chai A, Wang Q, et al. Comparative genomic analysis of Pseudomonas amygdali pv. lachrymans NM002: Insights into its potential virulence genes and putative invasion determinants. Genomics. 2019;111(6):1493-1503. doi: 10.1016/j.ygeno.2018.10.004
- Cross JE, Kennedy BW, Lambert JW, Cooper RL. Pathogenic races of bacterial blight pathogen of soybeans, Pseudomonas glycinea. Plant Disease Report. 1966;50(8):557-560.
- Gnanamanickam SS, Ward EWB. Bacterial blight of soybeans: a new race of Pseudomonas syringae pv. glycinea and variations in systemic symptoms. Can J Plant Pathol. 1982;4(1):73-78. doi: 10.1080/07060668209501341
- Prom LK, Venette JR. Races of Pseudomonas syringae pv. glycinea on Commercial Soybean in Eastern North Dakota. Plant Dis. 1997;81(5):541-544. doi: 10.1094/PDIS.1997.81.5.541
- Fett WF, and Sequeira L. Further characterization of the physiologic races of Pseudomonas glycinea. Can J Bot. 1981;59(3):283-287. doi: 10.1139/b81-040