Роль нанотехнологий в совершенствовании растениеводства
- Авторы: Лакзиан А.1, Баят М.2, Гаджикурбанов А.2, Заргар М.2
-
Учреждения:
- Университет Фердоуси
- Российский университет дружбы народов
- Выпуск: Том 14, № 4 (2019)
- Страницы: 297-305
- Раздел: Растениеводство
- URL: https://agrojournal.rudn.ru/agronomy/article/view/19518
- DOI: https://doi.org/10.22363/2312-797X-2019-14-4-297-305
Цитировать
Полный текст
Аннотация
Ключевые слова
Об авторах
Амир Лакзиан
Университет Фердоуси
Email: maryambayat1313@yahoo.com
профессор, кафедра почвоведения, сельскохозяйственный факультет Мешхед, Иран
Марьям Баят
Российский университет дружбы народов
Email: maryambayat1313@yahoo.com
агробиотехнологический департамент, Аграрно-технологический институт Москва, Российская Федерация
Анвар Гаджикурбанов
Российский университет дружбы народов
Email: gadcgikurbanow@mail.ru
агроинженерный департамент, Аграрно-технологический институт Москва, Российская Федерация
Мейсам Заргар
Российский университет дружбы народов
Email: zargar-m@rudn.ru
доцент, кандидат сельскохозяйственных наук, Агробиотехнологический департамент, Аграрно-технологический институт Москва, Российская Федерация
Список литературы
- Zhang C, Wenhui L, Zhu B, Chen H, Chi H, Li L, Qin Y, Xue J. The quality evaluation of postharvest strawberries stored in nano-Ag packages at refrigeration temperature. Polymers. 2018; 10(8):894. doi: 10.3390/polym10080894
- Liu L, Ji ML, Chen M, Sun M, Fu XL, Li L, Gao DS, Zhu CY. The flavor and nutritional characteristic of four strawberry varieties cultured in soilless system. Food SciNutr. 2016; 4(6):858-868. doi: 10.1002/fsn3.346
- Ruiz-Romeroa P, Salasb BV, Mendoza D, Trujillo VM. Antifungal effects of silver phytonanoparticles from Yucca shilerifera against strawberry soil-borne pathogens: Fusarium solani and Macrophomina phaseolina. Mycobiology. 2018; 46(1):47-51. doi: 10.1080/12298093.2018.1454011
- Pastrana AM, Capote N, De los Santos B, Romero R, Basallote-Ureba MJ. First report of Fusarium solani causing crown and root rot on strawberry crops in southwestern Spain. Plant Dis. 2014; 98(1):161. doi: 10.1094/PDIS-07-13-0682-PDN
- Sharifi K, Mahdavi M. First report of strawberry crown and root rot caused by Macrophominaphaseolina in Iran. Iran J Plant Pathol. 2011; 47(4):Pe479-Pe480.
- Adesina MF, Lembke A, Costa R, Speksnijder A, Smalla, K. Screening of bacterial isolates from various European soils for in vitro antagonistic activity towards Rhizoctonia solani and Fusarium oxysporum: site dependent composition and diversity revealed. Soil Biol Biochem. 2007; 39(11):2818-2828. doi: 10.1016/j.soilbio.2007.06.004
- Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS. Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology. 2011; 39(3):194-199. doi: 10.5941/MYCO.2011.39.3.194
- Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Shao W, He N, Hong J, Chen C. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology. 2007; 18(10):105104.
- Kouvaris P, Delimitis A, Zaspalis V, Papadopoulos D, Tsipas SA, Michailidis N. Green synthesis and characterization of silver nanoparticles produced using Arbutus Unedo leaf extract. Materials Letters. 2012; 76:18-20. doi: 10.1016/j.matlet.2012.02.025
- Park HH, Choi YJ. Direct patterning of SnO(2) composite films prepared with various contents of Pt nanoparticles by photochemical metal-organic deposition. Thin Solid Films. 2011; 519(19): 6214-6218. doi: 10.1016/j.tsf.2011.03.051
- Hubenthal F. Noble metal nanoparticles: synthesis and optical properties. In: Andrews DL, Scholes GD, Wiederrecht GP (eds.) Comprehensive Nanoscience and Technology. Vol. 1: Nanomaterials. New York: Elsevier Science; 2011; p. 375-435.
- Ghodake GS, Deshpande NG, Lee YP, Jin ES. Pear fruit extract-assisted room temperature biosynthesis of gold nanoplates. Colloids and Surface B: Biointerfaces. 2010; 75(2):584-589. doi: 10.1016/j.colsurfb.2009.09.040
- Sanghi R, Verma P. Biomimetic synthesis and characterization of protein capped silver nanoparticles. Bioresour Technol. 2009; 100(1):501-504. doi: 10.1016/j.biortech.2008.05.048
- Shankar SS, Rai A, Ahmad A, Sastry M. Rapid synthesis of Au, Ag and bimetallic Au core-Ag shell nanoparticles using neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science. 2004; 275(2):496-502. doi: 10.1016/j.jcis.2004.03.003
- Prasad R, Bhattacharyya A, Nguyen QD. Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Front Microbiol. 2017; 8:1014. doi: 10.3389/fmicb.2017.01014
- Vijayaraghava K, Nalini K. Biotemplates in the green synthesis of silver nanoparticles. Biotechnology journal. 2010; 5(10):1098-1110. doi: 10.1002/biot.201000167
- Huang L, Dian-Qing L, Yan-Jun W, Min DG, Xue ED. Controllable preparation of nano-MgO and investigation of its bactericidal properties. J Inorg Biochem. 2011; 99(5):986-993. doi: 10.1016/j.jinorgbio.2004.12.022
- Solanki JN, Murthy ZVP. Highly monodisperse and sub-nano silver particles synthesis via micro emulsion technique. Colloids Surface. 2010; 359(1-3):31-38. doi: 10.1016/j.colsurfa.2010.01.058
- Sastry RK, Rashmi HB, Rao NH. Nanotechnology Patents as R&D Indicators for Disease Management Strategies in Agriculture. J Intellect Prop Rights. 2010; 15(3):197-205.
- Delfani M, Firouzabadi MB, Farrokhi N, Makarian H. Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Commun Soil Sci Plant Anal. 2014; 45(4):530-540. doi: 10.1080/00103624.2013.863911
- Narro-Sanchez J, Davalos-Gonzalez PA, Velasquez-Valle R, Castro-Franco J. Main strawberry diseases in Irapuato, Guanajuato, and Zamora, Michoacan, Mexico. Acta Hortic. 2006; 708:167-172. doi: 10.17660/ActaHortic.2006.708.27
- Vitor G, Palma TC, Vieira B, Lourenço JP, Barros RJ, Costa MC. Start-up, adjustment and long-term performance of a two-stage bioremediation process, treating real acid mine drainage, coupled with biosynthesis of ZnS nanoparticles and ZnS/TiO2 nanocomposites. Miner Eng. 2015; 75:85-93. doi: 10.1016/j.mineng.2014.12.003
- Raposo R, Gomez V, Urrutia T, Melgarejo P. Fitness of Botrytis cinerea associated with dicarboximide resistance. Phytopathology. 2000; 90(11):1246-1249. doi: 10.1094/PHYTO.2000.90.11.1246
- Bartlett DW, Clough JM, Godwin JR, Hall AA, Hamer M, Parr-Dobrzanski B. The strobilurin fungicides. Pest Manag Sci. 2002; 58(7):649-622. doi: 10.1002/ps.520
- Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY. Antimicrobial effects of silver nanoparticles. Nanomedicine. 2007; 3(1):95-101. doi: 10.1016/j.nano.2006.12.001
- Rejinold NS, Muthunarayanan M, Muthuchelian K, Chennazhi KP, Nair SV, Jayakumar R. Saponin-loaded chitosan nanoparticles and their cytotoxicity to cancer cell lines in vitro. Carbohydr Polym. 2011; 84(1):407-416. doi: 10.1016/j.carbpol.2010.11.056
- Piacente S, Pizza C, Oleszek W. Saponins and phenolics of Yucca schidigera Roezl: chemistry and bioactivity. Phytochem Rev. 2011; 4(2-3):177-190. doi: 10.1007/s11101-005-1234-5
- Quiroz KA, Berríos M, Carrasco B, Retamales JB, Caligari PD, García-Gonzáles R. Meristem culture and subsequent micropropagation of Chilean strawberry (Fragaria chiloensis (L.) Duch.). Biol Res. 2017; 50(1):20-35. doi: 10.1186/s40659-017-0125-8
- Mozafari A, Havas F, Ghaderi N. Application of iron nanoparticles and salicylic acid in in vitro culture of strawberries (Fragaria × ananassa Duch.) to cope with drought stress. Plant Cell Tissue Org Cult. 2017; 132(3):511-523. doi: 10.1007/s11240-017-1347-8
- Villamizar-Gallardo R, Cruz OJF, Ortiz-Rodriguez OR. Fungicidal effect of silver nanoparticles on toxigenic fungi in cocoa. Pesq Agropec Bras. 2016; 51(12):1929-1936. doi: 10.1590/S0100-204X2016001200003
- Yaghubi K, Ghaderi N, Vafaee Y, Javadi T. Potassium silicate alleviates deleterious effects of salinity on two strawberry cultivars grown under soilless pot culture. Sci Hortic. 2016; 213:87-95. doi: 10.1016/j.scienta.2016.10.012
- Mahdizadeh V, Safaie N, Khelghatibana F. Evaluation of antifungal activity of silver nanoparticles against some phytopathogenic fungi and Trichoderma harzianum. J Crop Prot. 2015; 4(3):291-300.
- Mickelbart MV, Hasegawa PM, Bailey-Serres J. Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet. 2015; 16:237-251. doi: 10.1038/nrg3901