EFFECT OF BETA-AMINOBUTYRIC ACID ON ACTIVITY OF PEROXIDASE AND POLYPHENOL OXIDASE ENZYMES IN CUCUMBER INFECTED WITH NEMATODE MELOIDOGYNE JAVANICA

Cover Page

Abstract


Beta-amino-butyric acid is introduced as an inducer of resistance in plants against plant pathogens. In this research, the induction of some defensive compounds including peroxidase and polyphenol oxidase enzymes by this compound against the rootstock node-producing nematode Meloidogyne javanica in cucumber was investigated. The results showed that inoculation of cucumber roots infected with root-knot nematode with the chemical composition of BABA from the first day after inoculation increased the activity of peroxidase enzyme and reached its maximum on the fourth day of this activity. Induction of the activity of polyphenol oxidase enzyme showed a gradual increase with a significant difference in comparison to the control and healthy plants and reached the maximum on the fourth day. The electrophoresis of peroxidase isozymes showed that isozyme peroxidase forms in cucumber roots induced by BABA were much more potent than pathogen-induced isozymes. In plants treated with nematode plus BABA, two isozymes were Rf = 00.31 and Rf = 34/0, which were stronger than control (inoculated with nematode).


About the authors

Niloufar Mahmoudi

Peoples’ Friendship University of Russia (RUDN University)

Author for correspondence.
Email: niloofarmahmoodi@ymail.com
6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation

Department of AgroBiotechnology, Agrarian and Technological Institute

References

  1. Triki E., Trabelsi I., Amri M., Nefzi F., Kharrat M., Abbes Z. Effect of benzothiadiazole and salicylic acid resistance inducers on Orobanche foetida infestation in Vicia faba. Tunisian Journal of Plant Protection. 2018; 13(1):113-125.
  2. Zhong Y., Wang B., Yan J., Cheng L., Yao L., Xiao L., Wu T. DL-β-aminobutyric acid-induced resistance in soybean against Aphis glycines Matsumura (Hemiptera: Aphididae). PloS one. 2014; 9(1):e85142. Available from: doi: 10.1371/journal.pone.0085142.
  3. Gao J., Bi W., Li H., Wu J., Yu X., Liu D., Wang X. WRKY transcription factors associated with NPR1-mediated acquired resistance in barley are potential resources to improve wheat resistance to Puccinia triticina. Frontiers in plant science. 2018; (9):1486. Available from: doi: 10.3389/fpls.2018.01486.
  4. Abad P., Favery B., Rosso M.N., Castagnone-Sereno P. Root-knot nematode parasitism and host response: molecular basis of a sophisticated interaction. Molecular plant pathology. 2003; 4(4):217-224. Available from: doi: 10.1046/j.1364-3703.2003.00170.x.
  5. Nguyen C.N., Perfus-Barbeoch L., Quentin M., Zhao J., Magliano M., Marteu N., Da Rocha M., Nottet N., Abad P., Favery B. A root-knot nematode small glycine and cysteine-rich secreted effector, MiSGCR1, is involved in plant parasitism. New Phytologist. 2018; 217(2):687-699. Available from: doi: 10.1111/nph.14837.
  6. Görlach J., Volrath S., Knauf-Beiter G., Hengy G., Beckhove U., Kogel K.H., Oostendorp M., Staub T., Ward E., Kessmann H., Ryals J. Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. The Plant Cell. 1996; 8(4):629-643. Available from: doi: 10.1105/tpc.8.4.629.
  7. Wagner A., Norris S., Chatterjee P., Morris P.F., Wildschutte H. Aquatic Pseudomonads inhibit oomycete plant pathogens of glycine max. Frontiers in microbiology. 2018; (9):1007. Available from: doi: 10.3389/fmicb.2018.01007.
  8. Singh S., Singh A., Kumar S., Mittal P., Singh I.K. Protease inhibitors: recent advancement in its usage as a potential biocontrol agent for insect pest management. Insect science. 2018. Available from: doi: 10.1111/1744-7917.12641.
  9. Starý T., Satková P., Piterková J., Mieslerová B., Luhová L., Mikulík J., Kašparovský T., Petřivalský M., Lochman J. The elicitin β-cryptogein’s activity in tomato is mediated by jasmonic acid and ethylene signalling pathways independently of elicitin-sterol interactions. Planta. 2018. 1-11. Available from: doi: 10.1007/s00425-018-3036-1.
  10. Alshammari G.M., Balakrishnan A., Chinnasamy T. Protective role of germinated mung bean against progression of non-alcoholic steatohepatitis in rats: A dietary therapy to improve fatty liver health. Journal of Food Biochemistry. 2018; 42(5):e12542. Available from: doi: 10.1111/jfbc.12542.
  11. Oort A.J.P., Van Andel O.M. Aspects in chemotherapy. Mededel. Opz. Gent. 1960; 25:961-992.
  12. Prasad S., Webster J.M. The effect of amino acid antimetabolites on four nematode species and their host plants. Nematologica. 1967; 13(2):318-320.
  13. Cohen Y.R. β-aminobutyric acid-induced resistance against plant pathogens. Plant disease. 2002; 86(5):448-457. Available from: doi: 10.1094/PDIS.2002.86.5.448.
  14. Ben Rejeb I. BABA in priming tomato for enhanced tolerance to drought, salinity and fungal stress and combinations thereof. [Dissertation] Neuchâtel; 2018.
  15. Singh S.K., Sung T.Y., Chung T.Y., Lin S.Y., Lin S.C., Liao J.C., Hsieh W.Y., Hsieh M.-H. ACR11 modulates levels of reactive oxygen species and salicylic acid-associated defense response in Arabidopsis. Scientific reports. 2018; 8(1):11851. Available from: doi: 10.1038/s41598-018-30304-0.
  16. Wilkinson S., Pastor V., Paplauskas S., Pétriacq P., Luna E. Long-lasting β-aminobutyric acid-induced resistance protects tomato fruit against Botrytis cinerea. Plant Pathology. 2018; 67(1):30-41. Available from: doi: 10.1111/ppa.1272517.
  17. Powell G., Hodge S. Effects of β-aminobutyric acid on aphid stylet activities. IOBC-WPRS Bulletin. 2018; 135:124-126.
  18. Li K., Wu G., Li M., Ma M., Du J., Sun M., Sun X., Qing L. Transcriptome analysis of Nicotiana benthamiana infected by Tobacco curly shoot virus. Virology journal. 2018; 15(1):138. Available from: doi: 10.1186/s12985-018-1044-1.
  19. Devran Z., Baysal Ö. Induction of resistance to Meloidogyne incognita by DL-beta amino butyric acid under salt stress condition. Australasian Plant Disease Notes. 2018; 13(1):20. Available from: doi: 10.1007/s13314-018-0304-7.
  20. Oka Y., Cohen Y., Spiegel Y. Local and systemic induced resistance to the root-knot nematode in tomato by DL-β-amino-n-butyric acid. Phytopathology. 1999; 89(12):1138-1143. Available from: doi: 10.1094/PHYTO.1999.89.12.1138.
  21. Hussey R.S. A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Dis. Rep. 1973; 57:1025-1028.
  22. Reuveni R., Bothma G.S. The relationship between peroxidase activity and resistance to Sphaerotheca fuliginea in melons. Journal of Phytopathology. 1985; 114(3):260-267. Available from: doi: 10.1111/j.1439-0434.1985.tb00851.x.
  23. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 1976; 72 (1-2):248-254.
  24. Diniz I., Azinheira H., Figueiredo A., Gichuru E., Oliveira H., Guerra-Guimarães L., Silva M.C. Fungal penetration associated with recognition, signaling and defence-related genes and peroxidase activity during the resistance response of coffee to Colletotrichum kahawae. Physiological and Molecular Plant Pathology. 2018. Available from: doi: 10.1016/j.pmpp.2017.12.005.
  25. Porat R., Vinokur V., Weiss B., Cohen L., Daus A., Goldschmidt E.E., Droby S. Induction of resistance to Penicillium digitatum in grapefruit by β-aminobutyric acid. European Journal of Plant Pathology. 2003; 109(9):901-907. Available from: doi: 10.1023/B:EJPP.0000003624.28975.45.
  26. Sabbagh E., Sabbagh S.K., Panjehkeh N., Bolok-Yazdi H.R. Jasmonic acid induced systemic resistance in infected cucumber by Pythium aphanidermatum. Tarim Bilimleri Dergisi-Journal of Agricultural Sciences. 2018; 24(1):143-152.
  27. Hossain M.A., Li Z.G., Hoque T.S., Burritt D.J., Fujita M., Munné-Bosch S. Heat or cold priming-induced cross-tolerance to abiotic stresses in plants: key regulators and possible mechanisms. Protoplasma. 2018; 255(1):399-412. Available from: doi: 10.1007/s00709-017-1150-8.
  28. Dorjey S., Dolkar D., Sharma R. Plant growth promoting rhizobacteria Pseudomonas: a review. Int J Curr Microbiol App Sci. 2017; 6(7):1335-1344. Available from: doi: 10.20546/ijcmas. 2017.607.160.
  29. Vasanthi V., Samiyappan R., Vetrivel T. Development of a new chitin based bio-formulation of Pseudomonas fluorescens and a natural insecticide (Vitex trifolia) against Indian Tomato Leaf Curl Virus (iTLCV) and its whitefly vector. The Pharma Innovation Journal. 2017; 6(11): 574-578.
  30. Castagnone-Sereno P. Meloidogyne enterolobii (= M. mayaguensis): profile of an emerging, highly pathogenic, root-knot nematode species. Nematology. 2012; 14(2):133-138. Available from: doi: 10.1163/156854111X601650.
  31. Nuñez A.M., Rodríguez G.A., Monteiro F.P., Faria A.F., Silva J.C., Monteiro A.C., Carvalho C.V., Gomes L.A., Souza R.M., de Souza J.T., Medeiros F.H. Bio-based products control black rot (Xanthomonas campestris pv. campestris) and increase the nutraceutical and antioxidant components in kale. Scientific Reports. 2018; 8(1):10199. Available from: doi: 10.1038/s41598-018-28086-6.
  32. Zheng Y., Wang X., Liu S., Zhang K., Cai Z., Chen X., Zhang Y., Liu J., Wang A. The endochitinase of Clonostachys rosea expression in Bacillus amyloliquefaciens enhances the Botrytis cinerea resistance of tomato. International Journal of Molecular Sciences. 2018; 19(8):2221. Available from: doi: 10.3390/ijms19082221.
  33. Shikano I., Pan Q., Hoover K., Felton G.W. Herbivore-induced defenses in tomato plants enhance the lethality of the entomopathogenic bacterium, Bacillus thuringiensis var. kurstaki. Journal of Chemical Ecology. 2018; 44(10):947-956. Available from: doi: 10.1007/s10886-018-0987-4.
  34. Babu A.N., Jogaiah S., Ito S.I., Nagaraj A.K., Tran L.S.P. Improvement of growth, fruit weight and early blight disease protection of tomato plants by rhizosphere bacteria is correlated with their beneficial traits and induced biosynthesis of antioxidant peroxidase and polyphenol oxidase. Plant Science. 2015; 231:62-73. Available from: doi: 10.1016/j.plantsci.2014.11.006.

Supplementary files

There are no supplementary files to display.

Statistics

Views

Abstract - 1176

PDF (English) - 513

Cited-By


PlumX

Dimensions


Copyright (c) 2019 Mahmoudi N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies