Effect of combined use of fertilizer and plant growth stimulating bacteria Rhizobium, Azospirillum, Azotobacter and Pseudomonas on the quality and components of corn forage in Iran

Cover Page

Cite item

Abstract

Zea mays variety 704 (single cross) was studied to investigate effect of chemical fertilizers and growth-promoting bacteria on yield and yield components of corn ( Zea mays ). A factorial experiment was conducted in a completely randomized block design with three replications at Tehran-Varamin Research Farm (Iran) in 2017. The treatments were as follows: inoculation of the seeds with growth promoters in four levels: Rhizobium , Azospirillum , Azotobacter and Pseudomonas ; Rhizobium , Azospirillum and Pseudomonas ; Rhizobium , Azotobacter and Pseudomonas ; Azospirillum , Azotobacter and Pseudomonas and use of nitrogen (N) and phosphorus (P) fertilizers at four levels: no use, 1/3, 2/3, and 100 % recommended were applied. The results showed that the use of fertilizer was significant on the traits such as several leaves per plant, number of seeds per row, number of seeds per ear, plant height and forage yield at 1 % level. The results indicated that the highest forage yield of 33.78 t ha-1 was obtained from the interaction between the use of fertilizers and biological fertilizers, Rhizobium , Azospirillum , Azotobacter and Pseudomonas , which was 42 % higher than control.

About the authors

Yousef Naserzadeh

Peoples’ Friendship University of Russia (RUDN University)

Author for correspondence.
Email: unaserzadeh@gmail.com

PhD candidate, Department of AgroBiotechnology

Moscow, Russian Federation

Abdorreza Mohammadi Nafchi

Universiti Sains Malaysia

Email: niloofarmahmoodi@ymail.com

PhD candidate, Department of AgroBiotechnology

Penang, Malaysia

Niloufar Mahmoudi

Peoples’ Friendship University of Russia (RUDN University)

Email: amohammadi@usm.my

Professor of Food Technology School of Industrial Technology

Moscow, Russian Federation

Davoud Kartuli Nejad

Semnan University

Email: Kartooli58@gmail.com

Assistant Professor of Forestry, Faculty of Desert Studies

Semnan, Iran

Anvar Shikhragimovich Gadzhikurbanov

Peoples’ Friendship University of Russia (RUDN University)

Email: gadcgikurbanow@mail.ru

Department of AgroBiotechnology

Moscow, Russian Federation

References

  1. López P, Casanova E, Chacon L, Paz P, Guerrero JR. Residual effect of three phosphate rocks from Tachina [Venezuela] in a greenhouse experiment with maize (Zea mays L.) as indicator plant. Revista Cientifica UNET. 1990; 4(1—2):29—48.
  2. Bostick WM, Bado VB, Bationo A, Soler CT, Hoogenboom G, Jones JW. Soil carbon dynamics and crop residue yields of cropping systems in the Northern Guinea Savanna of Burkina Faso. Soil and Tillage Research. 2007; 93(1):138—151. doi: 10.1016/j.still.2006.03.020
  3. Sarkar S, Singh SR, Singh RP. The effect of organic and inorganic fertilizers on soil physical condition and the productivity of a rice–lentil cropping sequence in India. The Journal of Agricultural Science. 2003; 140(4):419—425. doi: 10.1017/S0021859603003186
  4. Tittonell P, Giller KE. When yield gaps are poverty traps: The paradigm of ecological intensification in African smallholder agriculture. Field Crops Research. 2013; 143:76—90. Available from: doi: 10.1016/j.fcr.2012.10.007
  5. Zimmerer KS. The compatibility of agricultural intensification in a global hotspot of smallholder agrobiodiversity (Bolivia). Proceedings of the National Academy of Sciences. 2013; 110(8):2769—2774. doi: 10.1073/pnas.1216294110
  6. Kumar A, Patel JS, Bahadur I, Meena VS. The molecular mechanisms of KSMs for enhancement of crop production under organic farming. In: Potassium solubilizing microorganisms for sustainable agriculture. New Delhi: Springer; 2016. p.61—75. doi: 10.1007/978-81-322-2776-2_5
  7. Naserzadeh Y, Kartoolinejad D, Mahmoudi N, Zargar M, Pakina E, Heydari M, et al. Nine strains of Pseudomonas fluorescens and P. putida: Effects on growth indices, seed and yield production of Carthamus tinctorius L. Research on Crops. 2018; 19(4):622—632. doi: 10.31830/2348-7542.2018.0001.39
  8. Vessey JK. Plant growth promoting rhizobacteria as biofertilizers. Plant and soil. 2003; 255(2):571—586. doi: 10.1023/A:1026037216893
  9. Jat LK, Singh YV, Meena SK, Meena SK, Parihar M, Jatav HS, et al. Does integrated nutrient management enhance agricultural productivity. Pure Appl Microbiol. 2015; 9(2):1211—1221.
  10. Naserzadeh Y, Mahmoudi N. Chelating Effect of Black Tea Extract Compared to Citric Acid in the Process of the Oxidation of Sunflower, Canola, Olive, and Tallow oils. International Journal of Agricultural and Biosystems Engineering. 2018; 12(5). DOI: 10.13140/ RG.2.2.12552.26887
  11. Wu S, Cao Z, Li Z, Cheung K, Wong MH. Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma. 2005; 125(1— 2):155—166. doi: 10.1016/j.geoderma.2004.07.003
  12. Parewa HP, Yadav J, Rakshit A. Effect of fertilizer levels, FYM and bioinoculants on soil properties in inceptisol of Varanasi, Uttar Pradesh, India. International Journal of Agriculture, Environment and Biotechnology. 2014; 7(3):517. doi: 10.5958/2230-732X.2014.01356.4
  13. Shata SM, Mahmoud A, Siam S. Improving calcareous soil productivity by integrated effect of intercropping and fertilizer. Research Journal of Agriculture and Biological Sciences. 2007; 3(6):733—739.
  14. Zahir ZA, Arshad M, Frankenberger WT. Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Advances in Agronomy. 2004; 81(1):98—169.
  15. Tien T, Gaskins M, Hubbell D. Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl. Environ. Microbiol. 1979; 37(5):1016—1024.
  16. Lambrecht M, Okon Y, Broek AV, Vanderleyden J. Indole-3-acetic acid: a reciprocal signalling molecule in bacteria–plant interactions. Trends in microbiology. 2000; 8(7):298— 300. doi: 10.1016/S0966-842X(00)01732-7
  17. Ahemad M, Kibret M. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King Saud University — science. 2014; 26(1):1—20. doi: 10.1016/j.jksus.2013.05.001
  18. Krystofova O, Shestivska V, Galiova M, Novotny K, Kaiser J, Zehnalek J, et al. Sunflower plants as bioindicators of environmental pollution with lead (II) ions. Sensors. 2009; 9(7):5040—5058. doi: 10.3390/s90705040
  19. Hernández-Rodríguez A, Heydrich-Pérez M, Acebo-Guerrero Y, Velazquez-Del Valle MG, Hernandez-Lauzardo AN. Antagonistic activity of Cuban native rhizobacteria against Fusarium verticillioides (Sacc.) Nirenb. in maize (Zea mays L.). Applied soil ecology. 2008; 39(2):180—186. doi: 10.1016/j.apsoil.2007.12.008
  20. Radha TK, Rao DLN. Plant growth promoting bacteria from cow dung based biodynamic preparations. Indian journal of microbiology. 2014; 54(4):413—418. doi: 10.1007/s12088014-0468-6
  21. Grönemeyer JL, Kulkarni A, Berkelmann D, Hurek T, Reinhold-Hurek B. Rhizobia indigenous to the Okavango region in Sub-Saharan Africa: diversity, adaptations, and host specificity. Appl. Environ. Microbiol. 2014; 80(23):7244—7257. doi: 10.1128/AEM.02417-14
  22. Hernandez AN, Hernandez A, Heydrich M. Selection of rhizobacteria for use in maize cultivation. Cultivos Tropicales. 1995; 6:5—8.
  23. Tilak KVBR, Singh CS, Roy NK, Subba Rao NS. Azospirillum brasilense and Azotobacter chroococcum inoculum: effect on yield of maize (Zea mays) and sorghum (Sorghum bicolor). Soil Biology and Biochemistry. 1982; 14(4): 417—418. doi: 10.1016/0038-0717(82)90016-5
  24. Almaghrabi OA, Massoud SI, Abdelmoneim TS. Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi journal of biological sciences. 2013; 20(1):57—61. doi: 10.1016/j.sjbs.2012.10.004
  25. Kohler J, Hernández JA, Caravaca F, Roldán A. Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environmental and Experimental Botany. 2009; 65(2—3):245—252. doi: 10.1016/j.envexpbot.2008.09.008
  26. Jäderlund L, Arthurson V, Granhall U, Jansson JK. Specific interactions between arbuscular mycorrhizal fungi and plant growth-promoting bacteria: as revealed by different combinations. FEMS microbiology letters. 2008; 287(2):174—180. doi: 10.1111/j.15746968.2008.01318.x
  27. Zahir A, Arshad M, Khalid A. Improving maize yield by inoculation with plant growth promoting rhizobacteria. Pakistan Journal of Soil Science. 1998; 15:7—11.
  28. Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, et al. Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Canadian Journal of Microbiology. 2001; 47(7):642—652. doi: 10.1139/w01-062
  29. Soleimanzadeh H, Habibi D, Ardakani M, Paknejad F, Rejali F. Response of sunflower (Helianthus annuus L.) to inoculation with Azotobacter under different nitrogen levels. AmericanEurasian Journal of Agricultural and Environmental Science. 2010; 7(3):265—268.
  30. Fulchieri M, Frioni L. Azospirillum inoculation on maize (Zea mays): effect on yield in a field experiment in central Argentina. Soil Biology and Biochemistry. 1994; 26(7):921— 923. doi: 10.1016/0038-0717(94)90308-5
  31. Rohitashav-Singh S, Sharma VK, Singh R. Response of forage maize (Zea mays L.) to Azotobacter inoculation and nitrogen. Indian J. Agronomy. 1993; 38:555—558.
  32. Ferrise R, Triossi A, Stratonovitch P, Bindi M, Martre P. Sowing date and nitrogen fertilisation effects on dry matter and nitrogen dynamics for durum wheat: An experimental and simulation study. Field Crops Research. 2010; 117(2—3):245—257. doi: 10.1016/j.fcr.2010.03.010
  33. Chabot R, Antoun H, Cescas MP. Stimulation de la croissance du maïs et de la laitue romaine par des microorganismes dissolvant le phosphore inorganique. Canadian journal of microbiology. 1993; 39(10):941—947. doi: 10.1139/m93-142
  34. Peiffer JA, Ley RE. Exploring the maize rhizosphere microbiome in the field: a glimpse into a highly complex system. Communicative & integrative biology. 2013; 6(5):e25177. doi: 10.4161/cib.25177

Copyright (c) 2019 Naserzadeh Y., Nafchi A.M., Mahmoudi N., Nejad D.K., Gadzhikurbanov A.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies