Meat qualitative composition of broiler chickens and feed digestibility when introducing a new organo-mineral feed additive into the diet as an alternative to antibiotics

Cover Page

Cite item

Full Text

Abstract

The search for alternative approaches to poultry farming aimed at improving the quality of meat and promoting health without the use of antibiotics is a vital task of modern poultry farming. Among the promising areas is the use as an alternative to antibiotics of complex multifunctional feed additives based on prebiotics, organic acids, and mineral components that contribute to the formation of healthy intestinal microflora, increasing the nonspecific resistance of poultry, as well as the quality of meat and productivity. The study is aimed at studying the effect of a new organo-mineral feed additive (OMFA) containing a prebiotic (lactulose), ultrafine silica dioxide particles, organic and amino acids, on the digestibility of nutrients, elemental, and amino acid composition of broiler chicken meat. The inclusion in the diet of a 4-component OMFA from the age of 7 and 15 days has a positive effect on nutrient absorption. An increase in the digestibility of crude protein, crude fat, and nitrogen-free extractives was noted. Early feeding period reduces the digestibility of crude fiber. The use of OMFA leads to an increase in the concentration of certain macro- and microelements in the tissues of broiler chickens, which has a positive effect on the quality of meat. The inclusion of OMFA in the diet is an effective way to optimize protein and fat metabolism, contributing to an increase in muscle mass and a decrease in the percentage of body fat. The ingredients of the feed additive increase the level of amino acids, which favorably affect the properties and nutritional value of broiler meat. When choosing the composition of the additive and the timing of feeding (from the age of 7 and 15 days), it is recommended to use a four-component OMFA for broiler chickens from the age of 15 days.

About the authors

Anastasia P. Ivanishcheva

Federal Scientific Center for Biological Systems and Agrotechnologies of the Russian Academy of Sciences

Email: nessi255@mail.ru
SPIN-code: 0000-0001-8264-4616 SPIN-код: 9400-5652
Orenburg, Russian Federation

Elena A. Sizova

Federal Scientific Center for Biological Systems and Agrotechnologies of the Russian Academy of Sciences

Email: sizova.l78@yandex.ru
SPIN-code: 0000-0002-5125-5981 SPIN-код: 9819-1051
Orenburg, Russian Federation

Tatyana N. Kholodilina

Federal Scientific Center for Biological Systems and Agrotechnologies of the Russian Academy of Sciences

Email: xolodilina@rambler.ru
SPIN-code: 0000-0002-3946-8247 SPIN-код: 2977-6059
Orenburg, Russian Federation

References

  1. Cai K, Shao W, Chen X, Campbell YL, Nair MN, Suman SP, et al. Meat quality traits and proteome profile of woody broiler breast (pectoralis major) meat. Poultry Science. 2018;97:337-346. doi: 10.3382/ps/pex284
  2. Chiesa LM, Nobile M, Panseri S, Arioli F. Antibiotic use in heavy pigs: comparison between urine and muscle samples from food chain animals analysed by HPLC-MS/MS. Food Chemistry. 2017;235:111-118. doi: 10.1016/j.foodchem.2017.04.184
  3. Li X, Wang L, Zhen Y, Li S, Xu Y. Chicken egg yolk antibodies (IgY) as non-antibiotic production enhancers for use in swine production: a review. Journal of Animal Science and Biotechnology. 2015;6:40. doi: 10.1186/s40104-015-0038-8
  4. Mehdi Y, Létourneau-Montminy MP, Gaucher ML, Chorfi Y, Suresh G, Rouissi T, Brar SK, Côté C, Ramirez AA, Godbout S. Use of antibiotics in broiler production: global impacts and alternatives. Animal Nutrition. 2018;4:170-178. doi: 10.1016/j.aninu.2018.03.002
  5. Pliego AB, Tavakoli M, Khusro A, Seidavi A, Elghandour MM, Salem AZ, Rene Rivas-Caceres R. Beneficial and adverse effects of medicinal plants as feed supplements in poultry nutrition: a review. Animal Biology. 2022; 33(2):369-391. doi: 10.1080/10495398.2020.1798973
  6. Ravindran V, Dryden GM. Additives. In The Encyclopedia of Animal Nutrition. CAB International: Wallingford, UK. 2023. doi: 10.1016/B978-0-323-85125-1.00209-X
  7. Zhang L, Zhang L, Zhan X, Zeng X, Zhou L, Cao G, et al. Effects of dietary supplementation of probiotic, Clostridium butyricum, on growth performance, immune response, intestinal barrier function, and digestive enzyme activity in broiler chickens challenged with Escherichia coli k88. Journal of Animal Science and Biotechnology. 2016;7:3. doi: 10.1186/s40104-016-0061-4
  8. Hagihara M, Kuroki Y, Ariyoshi T, Higashi S, Fukuda K, Yamashita R, et al. Clostridium butyricum modulates the microbiome to protect intestinal barrier function in mice with antibiotic-induced dysbiosis. iScience. 2020;23:100772. doi: 10.1016/j.isci.2019.100772
  9. Alagawany M, Abd El-Hack ME, Farag MR, Sachan S, Karthik K, Dhama K. The use of probiotics as eco-friendly alternatives to antibiotics in poultry nutrition. Environmental Science and Pollution Research. 2018;25:10611-10618. doi: 10.1007/s11356-018-1687-x
  10. Gadde UD, Oh S, Lee Y, Davis E, Zimmerman N, Rehberger T, et al. Dietary Bacillus subtilis-based direct-fed microbials alleviate LPS-induced intestinal immunological stress and improve intestinal barrier gene expression in commercial broiler chickens. Research in Veterinary Science. 2017;114:236-243. doi: 10.1016/j. rvsc.2017.05.004
  11. Dela Cruz PJD, Dagaas CT, Mangubat KMM, Angeles AA, Abanto OD. Dietary effects of commercial probiotics on growth performance, digestibility, and intestinal morphometry of broiler chickens. Tropical Animal Health and Production. 2019;51:1105-1115. doi: 10.1007/s11250-018-01791-0
  12. Upadhaya SD, Rudeaux F, Kim IH. Effects of inclusion of Bacillus subtilis (Gallipro) to energy- and protein-reduced diet on growth performance, nutrient digestibility, and meat quality and gas emission in broilers. Poultry Science. 2019;98:2169-2178. doi: 10.3382/ps/pey573
  13. Yu L, Peng Z, Dong L, Wang H, Shi S. Enterococcus faecium NCIMB 10415 supplementation improves the meat quality and antioxidant capacity of the muscle of broilers. Journal of Animal Physiology and Animal Nutrition. 2019;103:1099-1106. doi: 10.1111/jpn.13097
  14. Dibner JJ, Buttin P. Use of organic acids as a model to study the impact of gut microflora on nutrition and metabolism. Journal of Applied Poultry Research. 2002;11(4):453-463. doi: 10.1093/japr/11.4.453
  15. Sultan A, Ullah T, Khan S, Khan RU. Effect of organic acid supplementation on the performance and ileal microflora of broiler during the finishing period. Pakistan Journal of Zoology. 2015;47(3):635-639.
  16. Park KW, Rhee AR, Um JS, Paik IK. Effect of dietary available phosphorus and organic acids on the performance and egg quality of laying hens. Journal of Applied Poultry Research. 2009;18(3):598-604. doi: 10.3382/japr.2009-00043
  17. Мирошников С.А., Мустафина А.С., Губайдуллина И.З. Оценка действия ультрадисперсного оксида кремния на организм цыплят-бройлеров // Животноводство и кормопроизводство. 2020. Т. 3. № 1. С. 20-32. doi: 10.33284/2658-3135-103-1-20 EDN: TVZWNW
  18. Иванищева А.П., Сизова Е.А., Камирова А.М., Власов Е.А., Мусабаева Л.Л. Изменение элементного состава мышечной и костной ткани бройлеров на фоне скармливания им комплексной органо-минеральной добавки // Птица и птицепродукты. 2024. № 1. С. 24-27. doi: 10.30975/2073-4999-2024-26-1-28-31 EDN: QRUGHR
  19. Ибатуллин И., Ильчук И., Кривенок Н. Аргинин в комбикормах для бройлеров // Животноводство России. 2019. № 9. С. 15-17. doi: 10.25701/ZZR.2019.45.18.020 EDN: YNSVPD
  20. Fathima S, Al Hakeem WG, Selvaraj RK, Shanmugasundaram R. Beyond protein synthesis: the emerging role of arginine in poultry nutrition and host-microbe interactions. Frontiers in Physiology. 2024;3:14:1326809. doi: 10.3389/fphys 2023.1326809
  21. Garcia V, Catala-Gregori P, Hernandez F, Megias MD, Madrid J. Effect of formic acid and plant extracts on growth, nutrient digestibility, intestine mucosa morphology, and meat yield of broilers. Journal of Applied Poultry Research. 2007;16(4):555-562. doi: 10.3382/japr.2006-00116
  22. Pelicano ERL, Souza PA, Souza HBA, Figueiredo DF, Boiago MM, Carvalho SR, Bordon VF. Intestinal mucosa development in broiler chickens fed natural growth promoters. Revista Brasileira de Ciência do Solo. 2005;7:221-229. doi: 10.1590/S1516-635X2005000400005
  23. Nguyen DH, Kim IH. Protected organic acids improved growth performance, nutrient digestibility, and decreased gas emission in broilers. Animals. 2020;10(3):416. doi: 10.3390/ani10030416
  24. Zhao PY, Li HL, Mohammadi M, Kim IH. Effect of dietary lactulose supplementation on growth performance, nutrient digestibility, meat quality, relative organ weight, and excreta microflora in broilers. Poultry Science. 2016;95(1):84-89. doi: 10.3382/ps/pev324
  25. Wu X, Yang P, Sifa D, Wen Z. Effect of dietary stevioside supplementation on growth performance, nutrient digestibility, serum parameters, and intestinal microflora in broilers. Food & Function. 2019;10(6):2340-2346. doi: 10.1039/C8FO01883A
  26. Sohail MU, Rahman ZU, Ijaz A, Yousaf MS, Ashraf K, Yaqub T, Rehman H. Single or combined effects of mannan-oligosaccharides and probiotic supplements on the total oxidants, total antioxidants, enzymatic antioxidants, liver enzymes, and serum trace minerals in cyclic heat-stressed broilers. Poultry Science. 2011;(11):2573-2577. doi: 10.3382/ps.2011-01502
  27. Diab R, Canilho N, Pavel IA, Haffner FB, Girardon M, Pasc A. Silica-based systems for oral delivery of drugs, macromolecules and cells. Advances in Colloid and Interface Science. 2017;249:346-362. doi: 10.1016/j.cis.2017.04.005
  28. Tedesco E, Benetti F, Pezzani R. In vitro evaluation of different organic matrices used to modulate silicon bioavailability. FASEB Journal. 2020;34:12229-12238. doi: 10.1096/fj.202000060RR
  29. Belton DJ, Deschaume O, Perry CC. An overview of the fundamentals of the chemistry of silica with relevance to biosilicification and technological advances. FEBS Journal. 2012;279:1710-1720. doi: 10.1111/j.17424658.2012.08531.x
  30. Kim MH, Kim EJ, Jung JY, Choi MK. Effect of water-soluble silicon supplementation on bone status and balance of calcium and magnesium in male mice. Biological Trace Element Research. 2014;158:238-242. doi: 10.1007/s12011-014-9936-4
  31. Abdulwahab AA, Horniakova E. Effect of dietary Lactobacillus spp. and Enterococcus faecium supplementation on muscle amino acid profile and protein properties in broilers. Archiva Zootechnica. 2013;16:31- 40. doi: 10.1016/j.livsci.2018.02.010
  32. Podolian JN. Effect of probiotics on the chemical, mineral, and amino acid composition of broiler chicken meat. Ukrainian Journal of Ecology. 2017;7(1):61-65. doi: 10.15421/20178
  33. Liu X, Yan H, Lv L, Xu Q, Yin C, Zhang K, Wang P, Hu J. Growth performance and meat quality of broiler chickens supplemented with Bacillus licheniformis in drinking water. Asian-Australasian Journal of Animal Sciences. 2012;25(5):682-689. doi: 10.5713/ajas.2011.11334
  34. Podolian JN. Effect of probiotics on the chemical, mineral, and amino acid composition of broiler chicken meat. Ukrainian Journal of Ecology. 2017;7(1):61-65. doi: 10.15421/20178
  35. Mehdipour Z, Afsharmanesh M, Sami M. Effects of dietary synbiotic and cinnamon (Cinnamomum verum) supplementation on growth performance and meat quality in Japanese quail. Livestock Science. 2013;154(s1- 3):152-157. doi: 10.1016/j.livsci.2013.03.014

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Ivanishcheva A.P., Sizova E.A., Kholodilina T.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.