EVALUATION OF MORPHOLOGICAL AND BIOCHEMICAL RESISTANCE PARAMETERS TO CHLORIDE SALINATION IN DIFFERENT WHEAT GENOTYPES

Cover Page
  • Authors: Kononenko N.V1, Dilovarova T.A1, Kanavsky R.V1,2, Lebedev S.V3,4, Baranova E.N1, Fedoreeva L.I1,5
  • Affiliations:
    1. Russian Research Institute of Agricultural Biotechnology, Russian Academy of Sciences
    2. Russian State Agrarian University - Moscow Timiryazev Agricultural Academy
    3. Orenburg State University
    4. Federal Research Center of Russian Academy of Sciences
    5. Lomonosov Moscow State University
  • Issue: Vol 14, No 1 (2019)
  • Pages: 18-39
  • Section: Crop production
  • URL: http://agrojournal.rudn.ru/agronomy/article/view/19471
  • DOI: https://doi.org/10.22363/2312-797X-2019-14-1-18-39
  • Cite item

Abstract


Determining salt tolerance potential in wheat is one of the most important problems in breeding practice for areas with primary and secondary salinity. Presence of large areas of saline soils results in inhibition of growth, development and stability in obtaining high yields of agricultural plants. Therefore, there is a need for a comprehensive studying and improving of diagnostic methods during early growth stages. Different genotypes of wheat Triticum aestivum Host. and Triticum durum Desf. were used to identify salt tolerance markers. Both morphometric and some biochemical indicators of wheat varieties were used as salt tolerance markers. At this stage, it was shown that a comprehensive description of wheat varieties is needed to assess resistance of wheat varieties to chloride salinity.


About the authors

Neonila V Kononenko

Russian Research Institute of Agricultural Biotechnology, Russian Academy of Sciences

Author for correspondence.
Email: nilava@mail.ru
Moscow, 127550, Russian Federation

-

Tat’yana A Dilovarova

Russian Research Institute of Agricultural Biotechnology, Russian Academy of Sciences

Email: dilovarova@yandex.ru
Moscow, 127550, Russian Federation

-

Roman V Kanavsky

Russian Research Institute of Agricultural Biotechnology, Russian Academy of Sciences; Russian State Agrarian University - Moscow Timiryazev Agricultural Academy

Email: rkanav@yandex.ru
Moscow, 127550, Russian Federation; Moscow, 127550, Russian Federation

-

Svyatoslav V Lebedev

Orenburg State University; Federal Research Center of Russian Academy of Sciences

Email: nilava@mail.ru
Orenburg, 460018, Russian Federation; Orenburg, 460000, Russian Federation

-

Ekaterina N Baranova

Russian Research Institute of Agricultural Biotechnology, Russian Academy of Sciences

Email: greenpro2007@rambler.ru
Moscow, 127550, Russian Federation

-

Larisa I Fedoreeva

Russian Research Institute of Agricultural Biotechnology, Russian Academy of Sciences; Lomonosov Moscow State University

Email: fedlara@inbox.ru
Moscow, 127550, Russian Federation; Moscow, 119192, Russian Federation

-

References

  1. Balandrán-Quintana RR, Mercado-Ruiz JN, Mendoza-Wilson AM. Wheat bran proteins: a review of their uses and potential. Food Reviews International. 2015; 31(3):279—293. Available from: doi: 10.1080/87559129.2015.1015137.
  2. Kovrigina LV, Zaushintseva AV, Petunkina LO. Laboratory-based comparative assessment of salt-tolerance in barley cultivars. Proceedings on Applied Botany, Genetics and Breeding. 2006; 162:44—49. (In Russ).
  3. Udovenko GV, Goncharova ĖA. Effect of extreme environmental conditions on yield structure of agricultural plants. Leningrad: Gidrometeoizdat Publ.; 1982. (In Russ).
  4. Belozerova AA, Bome NA. Study of spring wheat reaction to salinity on the variability of sprouts morphometric parameters. Fundamental research. 2014; (12—2):300—306. (In Russ).
  5. Maas EV, Grieve CM. Spike and leaf development of sal-stressed wheat. Crop Science. 1990; 30(6):1309—1313. Available from: doi: 10.2135/cropsci1990.0011183X003000060031x.
  6. Maas EV, Lesch, SM, Francois LE, Grieve CM. Tiller development in salt-stressed wheat. Crop science. 1994; 34(6):1594—1603. Available from: doi: 10.2135/cropsci1994. 0011183X003400060032x.
  7. Turki N, Harrabi M, Okuno K. Effect of salinity on grain yield and quality of wheat and genetic relationships among durum and common wheat. J Arid Land Studies. 2012; 22(1):311—314.
  8. Houshmand S, Arzani A, Mirmohammadi-Maibody SAM. Effects of salinity and drought stress on grain quality of durum wheat. Communications in soil science and plant analysis. 2014; 45(3):297—308. Available from: doi: 10.1080/00103624.2013.861911.
  9. Boiko LA. Physiology of plant root system under soil salinization condition. Leningrad: Nauka Publ.; 1969. (In Russ).
  10. Colmer TD, Flowers TJ, Munns R. Use of wild relatives to improve salt tolerance in wheat. Journal of Experimental Botany. 2006; 57(5):1059—1078. Available from: doi: 10.1093/jxb/erj124.
  11. Baranova EN, Gulevich AA. Problems and perspectives of genetic engineering approach to the resolving of the tasks of plant resistance to salinity. Agricultural Вiology. 2006; 41(1):39—56. (In Russ).
  12. Munns R, James RA, Gilliham M, Flowers TJ, Colmer TD. Tissue tolerance: an essential but elusive trait for salt-tolerant crops. Functional Plant Biology. 2016; 43(12):1103—1113. Available from: doi: 10.1071/FP16187
  13. Zhurbitskii ZI. Theory and practice of vegetation method. Moscow: Nauka Publ.; 1968. (In Russ).
  14. Sid’ko AF, Botvich IY, Pis’man TI, Shevyrnogov AP. Estimation of the chlorophyll content and yield of grain crops via their chlorophyll potential. Biophysics. 2017; 62(3):565—569. (In Russ). Available from: doi: 10.1134/S0006350917030198.
  15. Sun Z, Liu S, Fan J, Li Q, Wang K, Guo M, Zhang G, Ren L,Zheng G, Ma T, Pu H, Cai J, Jiang D, Chen F, Li X. Performance index derived from chlorophyll A fluorescence induction curve indicates the salt induced grain yield loss in wheat. JAPS: Journal of Animal and Plant Sciences. 2018; 28(3):837—844.
  16. Farkas GL. Ribonucleases and ribonucleic acid breakdown. In: Parthier D, Boulter D. (eds.) Nucleic Acids and Proteins in Plants II. Encyclopedia of Plant Physiology. Berlin, Heidelberg: Springer; 1982. p. 224—262. Available from: doi: 10.1007/978-3-642-68347-3_8.
  17. Fukuda H, Komamine A. Establishment of an experimental system for the study of tracheary element differentiation from single cells isolated from the mesophyll of Zinnia elegans. Plant physiology. 1980; 65(1):57—60. Available from: doi: 10.1104/pp.65.1.57.
  18. van Doorn WG, Woltering EJ. Senescence and programmed cell death: substance or semantics? Journal of Experimental Botany. 2004; 55(406):2147—2153. Available from: doi: 10.1093/jxb/erh264.
  19. Kirnos MD, Volkova SA, Ganicheva NI, Kudryashova IB, Vanyushin BF. Synchronous DNA synthesis in coleoptile and initial leaf of developing etiolated wheat seedlings: nature and correlation of nuclear and mitochondrial DNA synthesis. Biochemistry. 1983; 48(10): 1587—1595. (In Russ).
  20. Kirnos MD, Alexandrushkina NI, Vanyushin BF. Apoptosis in cells of the initial leaf and coleoptile of wheat seedlings: internucleosomal fragmentation of genome and synthesis of “heavy” oligonucleosome-size DNA fragments. Biochemistry. 1997; 62 (8):1008—1014. (In Russ).
  21. Vanyushin BF. Apoptosis in plants. Uspekhi Biologicheskoi Khimii. 2001; 41(1):3—38. (In Russ).
  22. Bakeeva LE, Kirnos MD, Aleksandrushkina NI, Kazimirchyuk SB, Shorning BY, Zamyatnina VA, Yaguzhinsky LS, Vanyushin BF. Subcellular reorganization of mitochondria producing heavy DNA in aging wheat coleoptiles. FEBS Letters. 1999; 457(1):122—125. (In Russ).
  23. Vanyushin BF, Bakeeva LE, Zamyatnina VA, Aleksandrushkina NI. Apoptosis in plants: Spesific features of plant apoptotic cells and effect of various factors and agents. Int. Rev. Cytol. 2004; 233:135—179. (In Russ).
  24. Cimini S, Ronci MB, Barizza E, de Pinto MC, Locato V, Schiavo FL, De Gara L. Plant cell cultures as model systems to study programmed cell death. In: De Gara L, Locato V. (eds) Plant Programmed Cell Death. Methods in Molecular Biology. New York: Humana Press; 2018. p. 173—186. Available from: doi: 10.1007/978-1-4939-7668-3_16.
  25. Gibson SW, Todd CD. Arabidopsis AIR12 influences root development. Physiology and Molecular Biology of Plants. 2015: 21(4):479—489. Available from: doi: 10.1007/s12298-015-0323-1.
  26. Foyer CH, Noctor G. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxidants and Redox Signaling. 2009; 11(4):861—905. Available from: doi: 10.1089/ars.2008.2177.
  27. Munns R, Tester M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008; 59:651—681. Available from: doi: 10.1146/annurev.arplant.59.032607.092911.
  28. Kolupaev IE, Karpets IV. Reactive oxygen species and stress signaling in plants. Ukrainian biochemical journal. 2014; 86(4):18—35. (In Russ).
  29. Kreslavski VD, Los DA, Allakhverdiev SI, Kuznetsov VV. Signaling role of reactive oxygen species in plants under stress. Russian Journal of Plant Physiology. 2012; 59(2):163—178. (In Russ).
  30. Munns R, James RA, Läuchli A. Approaches to increasing the salt tolerance of wheat and other cereals. Journal of experimental botany. 2006; 57(5):1025—1043. Available from: doi: 10.1093/jxb/erj100.
  31. Lutsenko EK, Marushko EA, Kononenko NV, Leonova TG. Effects of fusicoccin on the early stages of sorghum growth at high NaCl concentrations. Russian Journal of Plant Physiology. 2005; 52(3):378—383. (In Russ).

Statistics

Views

Abstract - 946

PDF (Russian) - 596

Cited-By


PlumX

Dimensions


Copyright (c) 2019 Kononenko N.V., Dilovarova T.A., Kanavsky R.V., Lebedev S.V., Baranova E.N., Fedoreeva L.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies